/*
We will split regions in two types - heavy and light. Formally if CountVertices(R) >= B then R is heavy and if CountVertices(R) < B it's light.
We have 3 cases:
1) R1 and R2 are light. We can easly solve such queries in O((CountVertices(R1) + CountVertices(R2)) * log N) < O(B * log N)
2) R1 is heavy
3) R2 is heavy
Let's precompute the answers for all queries of type 2 and 3. The main observation is that there are O(N * N / B) such queries and we can solve them all in O(N * N / B * log N) time.
*/
#include <bits/stdc++.h>
#define endl '\n'
//#pragma GCC optimize ("O3")
//#pragma GCC target ("sse4")
#define SZ(x) ((int)x.size())
#define ALL(V) V.begin(), V.end()
#define L_B lower_bound
#define U_B upper_bound
using namespace std;
template<class T, class T2> inline int chkmax(T &x, const T2 &y) { return x < y ? x = y, 1 : 0; }
template<class T, class T2> inline int chkmin(T &x, const T2 &y) { return x > y ? x = y, 1 : 0; }
const int MAXN = (int)200042;
const int MAXR = 25042;
const int B = 500;
struct fenwick
{
int tr[MAXN];
int n;
void init(int sz)
{
n = sz;
for(int i = 0; i <= n; i++)
tr[i] = 0;
}
void add(int idx, int x)
{
for(; idx <= n; idx += (idx & -idx))
tr[idx] += x;
}
int query(int idx)
{
int ret = 0;
for(; idx > 0; idx -= (idx & -idx))
ret += tr[idx];
return ret;
}
int query(int l, int r) { return query(r) - query(l - 1); }
};
struct fenwick_range
{
int tr[MAXN];
int n;
void init(int sz)
{
n = sz + 1;
for(int i = 0; i <= n; i++)
tr[i] = 0;
}
void add(int idx, int x)
{
for(; idx <= n; idx += (idx & -idx))
tr[idx] += x;
}
int query(int idx)
{
int ret = 0;
for(; idx > 0; idx -= (idx & -idx))
ret += tr[idx];
return ret;
}
void update(int l, int r, int x)
{
add(l, x);
add(r + 1, -x);
}
};
fenwick T1;
fenwick_range T2;
int n, k, q;
vector<int> r[MAXN], adj[MAXN];
void read()
{
cin >> n >> k >> q;
int dummy;
cin >> dummy;
r[dummy].push_back(1);
for(int i = 2; i <= n; i++)
{
int par;
cin >> par >> dummy;
adj[par].push_back(i);
r[dummy].push_back(i);
}
}
int st[MAXN], en[MAXN], dfs_time;
void dfs(int u, int pr)
{
st[u] = ++dfs_time;
for(int v: adj[u])
if(v != pr)
dfs(v, u);
en[u] = dfs_time;
}
int h_id[MAXR], rv[B];
int64_t answer_t2[B][MAXR];
int64_t answer_t3[MAXR][B];
void solve()
{
dfs(1, 1);
T1.init(n);
T2.init(n);
int id = 0;
for(int i = 1; i <= k; i++)
if(SZ(r[i]) >= B)
h_id[i] = ++id, rv[id] = i;
for(int i = 1; i <= id; i++)
{
int r1 = rv[i];
for(int i: r[r1])
T2.update(st[i], en[i], 1);
for(int r2 = 1; r2 <= k; r2++)
for(int v: r[r2])
answer_t2[i][r2] += T2.query(st[v]);
for(int i: r[r1])
T2.update(st[i], en[i], -1);
}
for(int i = 1; i <= id; i++)
{
int r2 = rv[i];
for(int i: r[r2])
T1.add(st[i], 1);
for(int r1 = 1; r1 <= k; r1++)
for(int v: r[r1])
answer_t3[r1][i] += T1.query(st[v], en[v]);
for(int i: r[r2])
T1.add(st[i], -1);
}
while(q--)
{
int r1, r2;
cin >> r1 >> r2;
if(h_id[r1]) cout << answer_t2[h_id[r1]][r2];
else if(h_id[r2]) cout << answer_t3[r1][h_id[r2]];
else
{
for(int i: r[r2]) T1.add(st[i], 1);
int64_t answer = 0;
for(int j: r[r1]) answer += T1.query(st[j], en[j]);
for(int i: r[r2]) T1.add(st[i], -1);
cout << answer << endl;
}
cout << endl << flush;
}
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
read();
solve();
return 0;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
9 ms |
9720 KB |
Output is correct |
2 |
Correct |
10 ms |
9800 KB |
Output is correct |
3 |
Correct |
10 ms |
9800 KB |
Output is correct |
4 |
Correct |
14 ms |
9896 KB |
Output is correct |
5 |
Correct |
16 ms |
9940 KB |
Output is correct |
6 |
Correct |
26 ms |
9968 KB |
Output is correct |
7 |
Correct |
37 ms |
9968 KB |
Output is correct |
8 |
Correct |
43 ms |
9968 KB |
Output is correct |
9 |
Correct |
57 ms |
10368 KB |
Output is correct |
10 |
Correct |
83 ms |
10496 KB |
Output is correct |
11 |
Correct |
139 ms |
10680 KB |
Output is correct |
12 |
Correct |
161 ms |
11192 KB |
Output is correct |
13 |
Correct |
222 ms |
11192 KB |
Output is correct |
14 |
Correct |
318 ms |
11448 KB |
Output is correct |
15 |
Correct |
457 ms |
13880 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1520 ms |
15388 KB |
Output is correct |
2 |
Correct |
1729 ms |
15388 KB |
Output is correct |
3 |
Correct |
3293 ms |
17464 KB |
Output is correct |
4 |
Correct |
362 ms |
17464 KB |
Output is correct |
5 |
Correct |
339 ms |
17464 KB |
Output is correct |
6 |
Correct |
1234 ms |
37848 KB |
Output is correct |
7 |
Correct |
2703 ms |
37848 KB |
Output is correct |
8 |
Correct |
2610 ms |
57920 KB |
Output is correct |
9 |
Correct |
4371 ms |
57920 KB |
Output is correct |
10 |
Correct |
7264 ms |
57920 KB |
Output is correct |
11 |
Correct |
6899 ms |
57920 KB |
Output is correct |
12 |
Correct |
1752 ms |
75708 KB |
Output is correct |
13 |
Correct |
2555 ms |
75944 KB |
Output is correct |
14 |
Correct |
2950 ms |
91168 KB |
Output is correct |
15 |
Correct |
4644 ms |
122468 KB |
Output is correct |
16 |
Correct |
4981 ms |
127932 KB |
Output is correct |
17 |
Correct |
4709 ms |
127932 KB |
Output is correct |