/*
Let's imagine that we never remove edges. This means that we can solve the problem with a simple dsu (we will keep the sizes of the components). To solve this version we will use link-cut tree.
For each component we will keep the "answer" for its root. Obviously at the current time the answers will be the same the vertices in one component. So when we merge we will only add the values.
Unfortunately this is wrong as the components we merge might have common vertices. But we can easily fix it by exploiting the tree structure of the graph. For each edge we will keep the size of
the component when we last cut it. Let this number for an edge E be C(E). Then when we again add edge E to the graph, the new answer will be Answer(E.u) + Answer(E.v) - C(E). We mustn't forget
to change C(E) when we again remove E.
As I don't like implementing link-cut trees with splay tree, the theoretical complexity will be O(N log^2 N). However, in practice implementing them with treaps has the same speed and sometimes
is even faster. That's because the rotations of splay trees are slow.
*/
#include <bits/stdc++.h>
#define endl '\n'
//#pragma GCC optimize ("O3")
//#pragma GCC target ("sse4")
#define SZ(x) ((int)x.size())
#define ALL(V) V.begin(), V.end()
#define L_B lower_bound
#define U_B upper_bound
using namespace std;
template<class T, class T2> inline int chkmax(T &x, const T2 &y) { return x < y ? x = y, 1 : 0; }
template<class T, class T2> inline int chkmin(T &x, const T2 &y) { return x > y ? x = y, 1 : 0; }
const int MAXN = (1 << 20);
random_device rd;
mt19937 mt(rd());
struct node
{
int id, sz, prior;
node *l, *r, *par, *pp;
node() { id = sz = prior = 0; l = r = par = pp = nullptr; }
node(int _i)
{
id = _i;
prior = mt();
sz = 1;
l = r = par = pp = nullptr;
}
};
using pnode = node*;
inline int size(pnode t) { return t ? t->sz : 0; }
void pull(pnode &t)
{
if(!t) return;
t->sz = 1 + size(t->l) + size(t->r);
t->par = nullptr;
if(t->l) t->l->par = t;
if(t->r) t->r->par = t;
if(t->l && t->l->pp) t->pp = t->l->pp, t->l->pp = nullptr;
if(t->r && t->r->pp) t->pp = t->r->pp, t->r->pp = nullptr;
}
void merge(pnode &t, pnode l, pnode r)
{
if(!l) { t = r; pull(t); return; }
if(!r) { t = l; pull(t); return; }
if(l->prior > r->prior)
merge(l->r, l->r, r), t = l;
else
merge(r->l, l, r->l), t = r;
pull(t);
}
void split_sz(pnode t, pnode &l, pnode &r, int k, int add = 0)
{
if(!t) { l = nullptr; r = nullptr; return; }
int idx = add + size(t->l);
if(idx <= k)
split_sz(t->r, t->r, r, k, idx + 1), l = t;
else
split_sz(t->l, l, t->l, k, add), r = t;
pull(t);
}
int get_pos(pnode t)
{
if(!t) return 0;
int ret = size(t->l);
while(t->par)
{
if(t->par->r == t)
ret += 1 + size(t->par->l);
t = t->par;
}
return ret;
}
pnode treap_root(pnode t) { while(t->par) t = t->par; return t; }
pnode remove_after(pnode v)
{
pnode root = treap_root(v), L, R, prv_pp = root->pp;
root->pp = nullptr;
split_sz(root, L, R, get_pos(v));
if(R) R->pp = v;
L->pp = prv_pp;
return L;
}
void access(pnode v)
{
v = remove_after(v);
while(v->pp)
{
auto pr = v->pp;
v->pp = nullptr;
pr = remove_after(pr);
merge(v, pr, v);
}
}
int n, m, q;
pair<int, int> ed[MAXN];
void read()
{
cin >> n >> m >> q;
for(int i = 1; i <= n - 1; i++)
cin >> ed[i].first >> ed[i].second;
}
int last[MAXN];
int state_e[MAXN];
int ans[MAXN];
pnode ver[MAXN];
int dep[MAXN];
vector<int> adj[MAXN];
void pre_dfs(int u, int pr = -1, int d = 0)
{
dep[u] = d;
for(int v: adj[u])
if(v != pr)
pre_dfs(v, u, d + 1);
}
int root(int u)
{
access(ver[u]);
auto p = treap_root(ver[u]);
while(p->l) p = p->l;
return p->id;
}
void cut(int u, int v)
{
if(dep[u] < dep[v]) swap(u, v);
access(ver[u]);
access(ver[v]);
treap_root(ver[u])->pp = nullptr;
}
void link(int u, int v)
{
if(dep[u] < dep[v]) swap(u, v);
access(ver[u]);
treap_root(ver[u])->pp = ver[v];
}
void solve()
{
for(int i = 1; i < n; i++)
{
adj[ed[i].first].push_back(ed[i].second);
adj[ed[i].second].push_back(ed[i].first);
}
pre_dfs(1);
for(int i = 1; i <= n; i++)
ans[i] = 1, ver[i] = new node(i);
while(m--)
{
int i;
cin >> i;
state_e[i] ^= 1;
if(state_e[i] == 0)
{
last[i] = ans[root(ed[i].first)];
cut(ed[i].first, ed[i].second);
ans[root(ed[i].first)] = last[i];
ans[root(ed[i].second)] = last[i];
}
else
{
int nw = ans[root(ed[i].first)] + ans[root(ed[i].second)] - last[i];
link(ed[i].first, ed[i].second);
ans[root(ed[i].first)] = nw;
}
}
while(q--)
{
int u;
cin >> u;
cout << ans[root(u)] << endl;
}
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
read();
solve();
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
25 ms |
24952 KB |
Output is correct |
2 |
Correct |
24 ms |
25204 KB |
Output is correct |
3 |
Correct |
25 ms |
25288 KB |
Output is correct |
4 |
Correct |
23 ms |
25340 KB |
Output is correct |
5 |
Correct |
24 ms |
25340 KB |
Output is correct |
6 |
Correct |
24 ms |
25376 KB |
Output is correct |
7 |
Correct |
36 ms |
26872 KB |
Output is correct |
8 |
Correct |
37 ms |
26968 KB |
Output is correct |
9 |
Correct |
36 ms |
27192 KB |
Output is correct |
10 |
Correct |
203 ms |
40828 KB |
Output is correct |
11 |
Correct |
185 ms |
43236 KB |
Output is correct |
12 |
Correct |
176 ms |
50220 KB |
Output is correct |
13 |
Correct |
140 ms |
50220 KB |
Output is correct |
14 |
Correct |
146 ms |
50220 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
183 ms |
51376 KB |
Output is correct |
2 |
Correct |
166 ms |
53160 KB |
Output is correct |
3 |
Correct |
142 ms |
57120 KB |
Output is correct |
4 |
Correct |
144 ms |
58904 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
24 ms |
58904 KB |
Output is correct |
2 |
Correct |
25 ms |
58904 KB |
Output is correct |
3 |
Correct |
25 ms |
58904 KB |
Output is correct |
4 |
Correct |
24 ms |
58904 KB |
Output is correct |
5 |
Correct |
24 ms |
58904 KB |
Output is correct |
6 |
Correct |
26 ms |
58904 KB |
Output is correct |
7 |
Correct |
39 ms |
58904 KB |
Output is correct |
8 |
Correct |
224 ms |
62724 KB |
Output is correct |
9 |
Correct |
203 ms |
65524 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
212 ms |
65564 KB |
Output is correct |
2 |
Correct |
212 ms |
67720 KB |
Output is correct |
3 |
Correct |
210 ms |
70128 KB |
Output is correct |
4 |
Correct |
219 ms |
72504 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
24 ms |
72504 KB |
Output is correct |
2 |
Correct |
25 ms |
72504 KB |
Output is correct |
3 |
Correct |
26 ms |
72504 KB |
Output is correct |
4 |
Correct |
31 ms |
72504 KB |
Output is correct |
5 |
Correct |
25 ms |
72504 KB |
Output is correct |
6 |
Correct |
42 ms |
72504 KB |
Output is correct |
7 |
Correct |
226 ms |
72504 KB |
Output is correct |
8 |
Correct |
198 ms |
78524 KB |
Output is correct |
9 |
Correct |
204 ms |
78524 KB |
Output is correct |
10 |
Correct |
313 ms |
78844 KB |
Output is correct |
11 |
Correct |
237 ms |
84028 KB |
Output is correct |
12 |
Correct |
254 ms |
86572 KB |
Output is correct |
13 |
Correct |
207 ms |
90832 KB |
Output is correct |