Submission #849617

# Submission time Handle Problem Language Result Execution time Memory
849617 2023-09-15T06:47:12 Z skittles1412 Closing Time (IOI23_closing) C++17
100 / 100
856 ms 137980 KB
#include "bits/extc++.h"

using namespace std;

template <typename T, typename... U>
void dbgh(const T& t, const U&... u) {
    cerr << t;
    ((cerr << " | " << u), ...);
    cerr << endl;
}

#ifdef DEBUG
#define dbg(...)                                           \
    cerr << "L" << __LINE__ << " [" << #__VA_ARGS__ << "]" \
         << ": ";                                          \
    dbgh(__VA_ARGS__)
#else
#define cerr   \
    if (false) \
    cerr
#define dbg(...)
#endif

using ll = long long;
using u64 = uint64_t;

#define endl "\n"
#define long int64_t
#define sz(x) int(std::size(x))

template <typename T>
ostream& operator<<(ostream& out, const vector<T>& arr) {
    out << "[";
    for (int i = 0; i < sz(arr); i++) {
        if (i) {
            out << ", ";
        }
        out << arr[i];
    }
    return out << "]";
}

template <typename Cb>
struct Cmp {
    Cb cb;

    Cmp(Cb cb) : cb(cb) {}

    template <typename T>
    bool operator()(const T& a, const T& b) const {
        return cb(a) < cb(b);
    }
};

vector<vector<pair<int, long>>> edges_to_adj(
    int n,
    const vector<tuple<int, int, long>>& edges) {
    vector<vector<pair<int, long>>> graph(n);

    for (auto& [u, v, w] : edges) {
        graph[u].emplace_back(v, w);
        graph[v].emplace_back(u, w);
    }

    return graph;
}

struct DistDFS {
    vector<long> dist;
    vector<vector<pair<int, long>>> graph;

    DistDFS(int root, int n, const vector<tuple<int, int, long>>& edges)
        : dist(n), graph(edges_to_adj(n, edges)) {
        dfs(root, -1, 0);
    }

    void dfs(int u, int p, long d) {
        dist[u] = d;

        for (auto& [v, w] : graph[u]) {
            if (v == p) {
                continue;
            }

            dfs(v, u, d + w);
        }
    }
};

struct PathDFS {
    int n;
    vector<int> path;
    vector<char> on_path;
    vector<vector<int>> path_subs;
    vector<vector<pair<int, long>>> graph;

    PathDFS(int u0, int u1, int n, const vector<tuple<int, int, long>>& edges)
        : n(n), on_path(n), graph(edges_to_adj(n, edges)) {
        pdfs(u0, -1, u1);

        for (auto& a : path) {
            on_path[a] = true;
        }

        for (auto& a : path) {
            path_subs.emplace_back();
            dfs(a, -1, path_subs.back());
        }
    }

    vector<int> st;

    void pdfs(int u, int p, int targ) {
        st.push_back(u);

        if (u == targ) {
            path = st;
        }

        for (auto& [v, _w] : graph[u]) {
            if (v == p) {
                continue;
            }

            pdfs(v, u, targ);
        }

        st.pop_back();
    }

    void dfs(int u, int p, vector<int>& out) {
        out.push_back(u);

        for (auto& [v, _w] : graph[u]) {
            if (v == p || on_path[v]) {
                continue;
            }

            dfs(v, u, out);
        }
    }
};

template <typename T>
vector<int> coord_comp(const vector<T>& arr) {
    vector<pair<T, int>> v;
    for (int i = 0; i < sz(arr); i++) {
        v.emplace_back(arr[i], i);
    }
    sort(begin(v), end(v));

    vector<int> comp(sz(arr));
    for (int i = 0; i < sz(v); i++) {
        comp[v[i].second] = i;
    }

    return comp;
}

struct MArr {
    vector<long> vals;
    vector<int> comp;

    MArr(const vector<long>& vals) : vals(vals), comp(coord_comp(vals)) {}
};

struct Node {
    long sum, last0, last1;
    int cnt;

    Node operator+(const Node& n) const {
        if (n.last1 == -1) {
            return {sum + n.sum, last0, last1, cnt + n.cnt};
        } else if (n.last0 == -1) {
            return {sum + n.sum, last1, n.last1, cnt + n.cnt};
        } else {
            return {sum + n.sum, n.last0, n.last1, cnt + n.cnt};
        }
    }

    Node operator-(const Node& n) const {
        return {sum - n.sum, -1, -1, cnt - n.cnt};
    }

    static Node c_from(long x) {
        return {x, -1, x, 1};
    }

    static constexpr Node c_def() {
        return {0, -1, -1, 0};
    }
};

template <typename T>
constexpr T default_value() {
    return {};
}

template <>
constexpr Node default_value<Node>() {
    return Node::c_def();
}

template <typename T>
struct ST {
    int n;
    vector<T> v;

    ST(int _n) : n(1 << (__lg(_n) + 1)), v(2 * n, default_value<T>()) {}

    T query_point(int ind) const {
        return v[ind + n];
    }

    void update(int ind, const T& x) {
        ind += n;
        v[ind] = x;
        ind >>= 1;
        for (; ind; ind >>= 1) {
            v[ind] = v[ind * 2] + v[ind * 2 + 1];
        }
    }

    T query_pref(int ind) const {
        if (ind < 0) {
            return default_value<T>();
        } else if (ind >= n - 1) {
            return v[1];
        }

        T ans = default_value<T>();

        ind += n + 1;
        for (; ind > 1; ind >>= 1) {
            if (ind & 1) {
                ans = v[ind ^ 1] + ans;
            }
        }
        return ans;
    }

    T query_all() const {
        return v[1];
    }

    template <typename Cb>
    pair<int, T> bsearch(int o, int l, int r, const T& pref, const Cb& cb)
        const {
        if (l == r) {
            return {l - 1, pref};
        }

        int mid = (l + r) / 2, lc = o * 2, rc = lc + 1;
        if (!cb(pref + v[lc])) {
            return bsearch(lc, l, mid, pref, cb);
        } else {
            return bsearch(rc, mid + 1, r, pref + v[lc], cb);
        }
    }

    template <typename Cb>
    pair<int, T> bsearch(const Cb& cb) const {
        if (cb(v[1])) {
            return {n, v[1]};
        }
        return bsearch(1, 0, n - 1, default_value<T>(), cb);
    }
};

struct VEB {
    static constexpr int MAXD = 3, MAXN = 1 << (6 * MAXD);

    u64 v[MAXD][MAXN >> 6] {};

    void toggle(int ind) {
        auto set = [&](u64& mask, int bit, bool b) -> void {
            if (b) {
                mask |= u64(1) << bit;
            } else {
                mask &= ~(u64(1) << bit);
            }
        };

        v[MAXD - 1][ind >> 6] ^= u64(1) << (ind & 63);
        ind >>= 6;

        for (int i = MAXD - 2; i >= 0; i--) {
            set(v[i][ind >> 6], ind & 63, !!v[i + 1][ind]);
            ind >>= 6;
        }
    }

    optional<int> query_pred(int ind) {
        if (ind <= 0) {
            return {};
        }
        for (int i = MAXD - 1; i >= 0; i--) {
            u64 cur = v[i][ind >> 6] & ((u64(1) << (ind & 63)) - 1);
            if (!cur) {
                ind >>= 6;
                continue;
            }

            ind = (ind & (~63)) | int(__lg(cur));
            for (int j = i + 1; j < MAXD; j++) {
                ind = (ind << 6) | int(__lg(v[j][ind]));
            }
            return ind;
        }
        return {};
    }

    optional<int> query_succ(int ind) {
        for (int i = MAXD - 1; i >= 0; i--) {
            u64 cur = v[i][ind >> 6] >> 1 >> (ind & 63);
            if (!cur) {
                ind >>= 6;
                continue;
            }

            ind = (ind & (~63)) | (__builtin_ctzll(cur) + (ind & 63) + 1);
            for (int j = i + 1; j < MAXD; j++) {
                ind = (ind << 6) | __builtin_ctzll(v[j][ind]);
            }
            return ind;
        }
        return {};
    }
};

struct DS {
    int n;
    MArr arr[2];
    ST<Node> v_st[2];
    ST<long> v_stl;
    VEB v_inds[2];
    vector<int> comp, ord0;

    DS(const vector<long>& v0, const vector<long>& v1)
        : n(sz(v0)), arr {v0, v1}, v_st {n, n}, v_stl(2 * n) {
        vector<long> vals;
        vals.insert(vals.end(), begin(v0), end(v0));
        for (auto& a : v1) {
            vals.push_back(2 * a);
        }

        comp = coord_comp(vals);

        vector<int> ord(2 * n);
        for (int i = 0; i < 2 * n; i++) {
            ord[comp[i]] = i;
        }

        int last0 = -1;
        for (auto& a : ord) {
            if (a < n) {
                last0 = arr[0].comp[a];
            }
            ord0.push_back(last0);
        }
    }

    template <int IND>
    void insert(int x) {
        if constexpr (!IND) {
            v_inds[IND].toggle(arr[IND].comp[x]);
        }
        v_st[IND].update(arr[IND].comp[x], Node::c_from(arr[IND].vals[x]));
        int ox = x + IND * n;
        v_stl.update(comp[ox], arr[IND].vals[x]);
    }

    template <int IND>
    void erase(int x) {
        if constexpr (!IND) {
            v_inds[IND].toggle(arr[IND].comp[x]);
        }
        v_st[IND].update(arr[IND].comp[x], Node::c_def());
        int ox = x + IND * n;
        v_stl.update(comp[ox], 0);
    }

    int query(long kv) {
        int ans = -1e9;

        auto upd_ans_q0_q1 = [&](const Node& q0, const Node& q1) -> void {
            if (q0.sum + q1.sum <= kv) {
                ans = max(ans, q0.cnt * 2 + q1.cnt);
            }
        };
        auto upd_ans_q0 = [&](const Node& q0) -> void {
            auto q1 = v_st[1]
                          .bsearch([&](const Node& o) -> bool {
                              return q0.sum + o.sum <= kv;
                          })
                          .second;

            upd_ans_q0_q1(q0, q1);
        };

        int l = ({
            int ind =
                v_stl.bsearch([&](long x) -> bool { return x <= kv; }).first;

            int l;
            if (ind < 0) {
                l = -1;
            } else if (ind >= 2 * n) {
                l = n;
            } else {
                l = ord0[ind];
            }

            l;
        });

        Node last_q0 = v_st[0].query_pref(l);

        upd_ans_q0(last_q0);
        upd_ans_q0(Node::c_def());
        {
            auto [u, q0] = v_st[0].bsearch(
                [&](const Node& o) -> bool { return o.sum <= kv; });
            upd_ans_q0(q0);
            if (u - 1 >= 0) {
                upd_ans_q0(q0 - v_st[0].query_point(u - 1));
            }
        }
        {
            auto [u, q0] = v_st[0].bsearch([&](const Node& o) -> bool {
                return o.sum <= kv - v_st[1].query_all().sum;
            });
            upd_ans_q0(q0);
            if (u + 1 < v_st[0].n) {
                upd_ans_q0(q0 + v_st[0].query_point(u + 1));
            }
        }

        {
            int u = l;
            Node q0 = last_q0;

            for (int it = 0; it < 2; it++) {
                auto n_u = v_inds[0].query_succ(u);
                if (!n_u) {
                    break;
                }

                u = n_u.value();
                q0 = q0 + v_st[0].query_point(u);
                upd_ans_q0(q0);
            }
        }
        {
            int u = l;
            Node q0 = last_q0;

            for (int it = 0; it < 2; it++) {
                auto n_u = v_inds[0].query_pred(u);
                if (!n_u) {
                    break;
                }

                u = n_u.value();
                q0 = q0 - v_st[0].query_point(u);
                upd_ans_q0(q0);
            }
        }

        return ans;
    }
};

int solve_disjoint(long kv,
                   const vector<long>& dist0,
                   const vector<long>& dist1) {
    vector<long> dists;
    dists.insert(dists.end(), begin(dist0), end(dist0));
    dists.insert(dists.end(), begin(dist1), end(dist1));

    sort(begin(dists), end(dists));

    long sum = 0;
    int i;
    for (i = 0; i < sz(dists); i++) {
        sum += dists[i];
        if (sum > kv) {
            break;
        }
    }

    return i;
}

int solve(int n, int u0, int u1, long kv, vector<tuple<int, int, long>> edges) {
    auto dist0 = DistDFS(u0, n, edges).dist, dist1 = DistDFS(u1, n, edges).dist;
    auto path_dfs = PathDFS(u0, u1, n, edges);
    auto path = path_dfs.path_subs;
    int m = sz(path);

    vector<long> cost1(n), cost2(n), delta(n);

    for (int i = 0; i < n; i++) {
        cost1[i] = min(dist0[i], dist1[i]);
        cost2[i] = max(dist0[i], dist1[i]);
        delta[i] = cost2[i] - cost1[i];
    }

    map<long, vector<int>> mp;

    for (int i = 0; i < m; i++) {
        mp[delta[path[i][0]]].push_back(i);
    }

    DS ds(cost2, cost1);

    int ans = solve_disjoint(kv, dist0, dist1);
    dbg(ans);

    int ans_add = 0;
    long min_cost = 0;
    for (auto& a : path_dfs.path) {
        ans_add++;
        min_cost += cost1[a];
    }

    auto move_vals = [&](vector<int> nodes, bool undo) -> void {
        sort(begin(nodes), end(nodes),
             Cmp([&](int u) -> long { return cost1[u]; }));

        for (auto& u : nodes) {
            if (path_dfs.on_path[u]) {
                ans_add++;
                min_cost += delta[u];
            } else {
                ds.erase<1>(u);
                ds.insert<0>(u);
            }

            ans = max(ans, ans_add + ds.query(kv - min_cost));
            dbg(ans, ans_add, min_cost);
        }

        if (!undo) {
            return;
        }

        for (auto& u : nodes) {
            if (path_dfs.on_path[u]) {
                ans_add--;
                min_cost -= delta[u];
            } else {
                ds.insert<1>(u);
                ds.erase<0>(u);
            }
        }
    };

    for (int i = 0; i < n; i++) {
        if (path_dfs.on_path[i]) {
            continue;
        }
        ds.insert<1>(i);
    }

    for (auto& [_k, vals] : mp) {
        dbg(vals);
        if (sz(vals) == 1) {
            move_vals(path[vals[0]], false);
            continue;
        }

        assert(sz(vals) == 2);
        dbg(ans_add, min_cost);
        move_vals(path[vals[0]], true);
        dbg(ans_add, min_cost);
        move_vals(path[vals[1]], false);
        move_vals(path[vals[0]], false);
    }

    return ans;
}

int max_score(int n,
              int u0,
              int u1,
              ll kv,
              vector<int> edges_u,
              vector<int> edges_v,
              vector<int> edges_w) {
    vector<tuple<int, int, long>> edges;

    for (int i = 0; i < n - 1; i++) {
        edges.emplace_back(edges_u[i], edges_v[i], edges_w[i]);
    }

    return solve(n, u0, u1, kv, edges);
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 464 ms 117244 KB Output is correct
2 Correct 468 ms 137064 KB Output is correct
3 Correct 245 ms 3668 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 0 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 0 ms 604 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 0 ms 604 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 0 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 0 ms 604 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 0 ms 604 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 1 ms 604 KB Output is correct
13 Correct 0 ms 604 KB Output is correct
14 Correct 0 ms 604 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 0 ms 604 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 2 ms 852 KB Output is correct
20 Correct 1 ms 604 KB Output is correct
21 Correct 1 ms 860 KB Output is correct
22 Correct 1 ms 860 KB Output is correct
23 Correct 1 ms 860 KB Output is correct
24 Correct 1 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 0 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 0 ms 604 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 0 ms 604 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 1 ms 604 KB Output is correct
13 Correct 0 ms 604 KB Output is correct
14 Correct 0 ms 604 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 0 ms 604 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 2 ms 852 KB Output is correct
20 Correct 1 ms 604 KB Output is correct
21 Correct 1 ms 860 KB Output is correct
22 Correct 1 ms 860 KB Output is correct
23 Correct 1 ms 860 KB Output is correct
24 Correct 1 ms 860 KB Output is correct
25 Correct 5 ms 604 KB Output is correct
26 Correct 6 ms 2008 KB Output is correct
27 Correct 6 ms 2040 KB Output is correct
28 Correct 4 ms 2808 KB Output is correct
29 Correct 4 ms 2528 KB Output is correct
30 Correct 5 ms 2160 KB Output is correct
31 Correct 4 ms 2776 KB Output is correct
32 Correct 4 ms 2776 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 0 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 0 ms 604 KB Output is correct
9 Correct 0 ms 604 KB Output is correct
10 Correct 0 ms 604 KB Output is correct
11 Correct 0 ms 604 KB Output is correct
12 Correct 0 ms 604 KB Output is correct
13 Correct 0 ms 604 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 0 ms 408 KB Output is correct
16 Correct 1 ms 600 KB Output is correct
17 Correct 0 ms 604 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 0 ms 604 KB Output is correct
21 Correct 0 ms 604 KB Output is correct
22 Correct 0 ms 604 KB Output is correct
23 Correct 0 ms 604 KB Output is correct
24 Correct 0 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 0 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 0 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 0 ms 604 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 1 ms 600 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 0 ms 604 KB Output is correct
15 Correct 0 ms 604 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 1 ms 604 KB Output is correct
18 Correct 0 ms 604 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 0 ms 604 KB Output is correct
21 Correct 0 ms 604 KB Output is correct
22 Correct 0 ms 604 KB Output is correct
23 Correct 0 ms 604 KB Output is correct
24 Correct 0 ms 604 KB Output is correct
25 Correct 0 ms 604 KB Output is correct
26 Correct 1 ms 604 KB Output is correct
27 Correct 0 ms 408 KB Output is correct
28 Correct 1 ms 600 KB Output is correct
29 Correct 0 ms 604 KB Output is correct
30 Correct 1 ms 604 KB Output is correct
31 Correct 1 ms 604 KB Output is correct
32 Correct 0 ms 604 KB Output is correct
33 Correct 0 ms 604 KB Output is correct
34 Correct 0 ms 604 KB Output is correct
35 Correct 0 ms 604 KB Output is correct
36 Correct 0 ms 604 KB Output is correct
37 Correct 1 ms 600 KB Output is correct
38 Correct 1 ms 604 KB Output is correct
39 Correct 1 ms 604 KB Output is correct
40 Correct 1 ms 640 KB Output is correct
41 Correct 1 ms 604 KB Output is correct
42 Correct 1 ms 604 KB Output is correct
43 Correct 1 ms 600 KB Output is correct
44 Correct 1 ms 604 KB Output is correct
45 Correct 1 ms 604 KB Output is correct
46 Correct 1 ms 604 KB Output is correct
47 Correct 1 ms 604 KB Output is correct
48 Correct 0 ms 604 KB Output is correct
49 Correct 1 ms 600 KB Output is correct
50 Correct 0 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 0 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 0 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 0 ms 604 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 1 ms 600 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 0 ms 604 KB Output is correct
15 Correct 0 ms 604 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 1 ms 604 KB Output is correct
18 Correct 0 ms 604 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 2 ms 852 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 1 ms 860 KB Output is correct
23 Correct 1 ms 860 KB Output is correct
24 Correct 1 ms 860 KB Output is correct
25 Correct 1 ms 860 KB Output is correct
26 Correct 1 ms 604 KB Output is correct
27 Correct 0 ms 604 KB Output is correct
28 Correct 0 ms 604 KB Output is correct
29 Correct 0 ms 604 KB Output is correct
30 Correct 0 ms 604 KB Output is correct
31 Correct 0 ms 604 KB Output is correct
32 Correct 0 ms 604 KB Output is correct
33 Correct 1 ms 604 KB Output is correct
34 Correct 0 ms 408 KB Output is correct
35 Correct 1 ms 600 KB Output is correct
36 Correct 0 ms 604 KB Output is correct
37 Correct 1 ms 604 KB Output is correct
38 Correct 1 ms 604 KB Output is correct
39 Correct 0 ms 604 KB Output is correct
40 Correct 0 ms 604 KB Output is correct
41 Correct 0 ms 604 KB Output is correct
42 Correct 0 ms 604 KB Output is correct
43 Correct 0 ms 604 KB Output is correct
44 Correct 1 ms 600 KB Output is correct
45 Correct 1 ms 604 KB Output is correct
46 Correct 1 ms 604 KB Output is correct
47 Correct 1 ms 640 KB Output is correct
48 Correct 1 ms 604 KB Output is correct
49 Correct 1 ms 604 KB Output is correct
50 Correct 1 ms 600 KB Output is correct
51 Correct 1 ms 604 KB Output is correct
52 Correct 1 ms 604 KB Output is correct
53 Correct 1 ms 604 KB Output is correct
54 Correct 1 ms 604 KB Output is correct
55 Correct 0 ms 604 KB Output is correct
56 Correct 1 ms 600 KB Output is correct
57 Correct 0 ms 604 KB Output is correct
58 Correct 2 ms 604 KB Output is correct
59 Correct 1 ms 604 KB Output is correct
60 Correct 1 ms 604 KB Output is correct
61 Correct 1 ms 604 KB Output is correct
62 Correct 2 ms 600 KB Output is correct
63 Correct 1 ms 604 KB Output is correct
64 Correct 1 ms 604 KB Output is correct
65 Correct 1 ms 604 KB Output is correct
66 Correct 2 ms 604 KB Output is correct
67 Correct 1 ms 604 KB Output is correct
68 Correct 2 ms 860 KB Output is correct
69 Correct 2 ms 860 KB Output is correct
70 Correct 1 ms 860 KB Output is correct
71 Correct 1 ms 856 KB Output is correct
72 Correct 1 ms 604 KB Output is correct
73 Correct 1 ms 604 KB Output is correct
74 Correct 1 ms 604 KB Output is correct
75 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 0 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 0 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 0 ms 604 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 1 ms 600 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 0 ms 604 KB Output is correct
15 Correct 0 ms 604 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 1 ms 604 KB Output is correct
18 Correct 0 ms 604 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 2 ms 852 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 1 ms 860 KB Output is correct
23 Correct 1 ms 860 KB Output is correct
24 Correct 1 ms 860 KB Output is correct
25 Correct 1 ms 860 KB Output is correct
26 Correct 5 ms 604 KB Output is correct
27 Correct 6 ms 2008 KB Output is correct
28 Correct 6 ms 2040 KB Output is correct
29 Correct 4 ms 2808 KB Output is correct
30 Correct 4 ms 2528 KB Output is correct
31 Correct 5 ms 2160 KB Output is correct
32 Correct 4 ms 2776 KB Output is correct
33 Correct 4 ms 2776 KB Output is correct
34 Correct 1 ms 604 KB Output is correct
35 Correct 0 ms 604 KB Output is correct
36 Correct 0 ms 604 KB Output is correct
37 Correct 0 ms 604 KB Output is correct
38 Correct 0 ms 604 KB Output is correct
39 Correct 0 ms 604 KB Output is correct
40 Correct 0 ms 604 KB Output is correct
41 Correct 1 ms 604 KB Output is correct
42 Correct 0 ms 408 KB Output is correct
43 Correct 1 ms 600 KB Output is correct
44 Correct 0 ms 604 KB Output is correct
45 Correct 1 ms 604 KB Output is correct
46 Correct 1 ms 604 KB Output is correct
47 Correct 0 ms 604 KB Output is correct
48 Correct 0 ms 604 KB Output is correct
49 Correct 0 ms 604 KB Output is correct
50 Correct 0 ms 604 KB Output is correct
51 Correct 0 ms 604 KB Output is correct
52 Correct 1 ms 600 KB Output is correct
53 Correct 1 ms 604 KB Output is correct
54 Correct 1 ms 604 KB Output is correct
55 Correct 1 ms 640 KB Output is correct
56 Correct 1 ms 604 KB Output is correct
57 Correct 1 ms 604 KB Output is correct
58 Correct 1 ms 600 KB Output is correct
59 Correct 1 ms 604 KB Output is correct
60 Correct 1 ms 604 KB Output is correct
61 Correct 1 ms 604 KB Output is correct
62 Correct 1 ms 604 KB Output is correct
63 Correct 0 ms 604 KB Output is correct
64 Correct 1 ms 600 KB Output is correct
65 Correct 0 ms 604 KB Output is correct
66 Correct 2 ms 604 KB Output is correct
67 Correct 1 ms 604 KB Output is correct
68 Correct 1 ms 604 KB Output is correct
69 Correct 1 ms 604 KB Output is correct
70 Correct 2 ms 600 KB Output is correct
71 Correct 1 ms 604 KB Output is correct
72 Correct 1 ms 604 KB Output is correct
73 Correct 1 ms 604 KB Output is correct
74 Correct 2 ms 604 KB Output is correct
75 Correct 1 ms 604 KB Output is correct
76 Correct 2 ms 860 KB Output is correct
77 Correct 2 ms 860 KB Output is correct
78 Correct 1 ms 860 KB Output is correct
79 Correct 1 ms 856 KB Output is correct
80 Correct 1 ms 604 KB Output is correct
81 Correct 1 ms 604 KB Output is correct
82 Correct 1 ms 604 KB Output is correct
83 Correct 1 ms 604 KB Output is correct
84 Correct 5 ms 604 KB Output is correct
85 Correct 5 ms 692 KB Output is correct
86 Correct 5 ms 604 KB Output is correct
87 Correct 5 ms 764 KB Output is correct
88 Correct 5 ms 604 KB Output is correct
89 Correct 6 ms 2140 KB Output is correct
90 Correct 5 ms 1884 KB Output is correct
91 Correct 6 ms 2140 KB Output is correct
92 Correct 6 ms 2060 KB Output is correct
93 Correct 5 ms 2140 KB Output is correct
94 Correct 5 ms 2396 KB Output is correct
95 Correct 6 ms 2396 KB Output is correct
96 Correct 5 ms 2416 KB Output is correct
97 Correct 5 ms 2140 KB Output is correct
98 Correct 6 ms 2140 KB Output is correct
99 Correct 5 ms 2140 KB Output is correct
100 Correct 6 ms 1884 KB Output is correct
101 Correct 4 ms 672 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 0 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 0 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 0 ms 604 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 1 ms 600 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 0 ms 604 KB Output is correct
15 Correct 0 ms 604 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 1 ms 604 KB Output is correct
18 Correct 0 ms 604 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 2 ms 852 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 1 ms 860 KB Output is correct
23 Correct 1 ms 860 KB Output is correct
24 Correct 1 ms 860 KB Output is correct
25 Correct 1 ms 860 KB Output is correct
26 Correct 5 ms 604 KB Output is correct
27 Correct 6 ms 2008 KB Output is correct
28 Correct 6 ms 2040 KB Output is correct
29 Correct 4 ms 2808 KB Output is correct
30 Correct 4 ms 2528 KB Output is correct
31 Correct 5 ms 2160 KB Output is correct
32 Correct 4 ms 2776 KB Output is correct
33 Correct 4 ms 2776 KB Output is correct
34 Correct 1 ms 604 KB Output is correct
35 Correct 0 ms 604 KB Output is correct
36 Correct 0 ms 604 KB Output is correct
37 Correct 0 ms 604 KB Output is correct
38 Correct 0 ms 604 KB Output is correct
39 Correct 0 ms 604 KB Output is correct
40 Correct 0 ms 604 KB Output is correct
41 Correct 1 ms 604 KB Output is correct
42 Correct 0 ms 408 KB Output is correct
43 Correct 1 ms 600 KB Output is correct
44 Correct 0 ms 604 KB Output is correct
45 Correct 1 ms 604 KB Output is correct
46 Correct 1 ms 604 KB Output is correct
47 Correct 0 ms 604 KB Output is correct
48 Correct 0 ms 604 KB Output is correct
49 Correct 0 ms 604 KB Output is correct
50 Correct 0 ms 604 KB Output is correct
51 Correct 0 ms 604 KB Output is correct
52 Correct 1 ms 600 KB Output is correct
53 Correct 1 ms 604 KB Output is correct
54 Correct 1 ms 604 KB Output is correct
55 Correct 1 ms 640 KB Output is correct
56 Correct 1 ms 604 KB Output is correct
57 Correct 1 ms 604 KB Output is correct
58 Correct 1 ms 600 KB Output is correct
59 Correct 1 ms 604 KB Output is correct
60 Correct 1 ms 604 KB Output is correct
61 Correct 1 ms 604 KB Output is correct
62 Correct 1 ms 604 KB Output is correct
63 Correct 0 ms 604 KB Output is correct
64 Correct 1 ms 600 KB Output is correct
65 Correct 0 ms 604 KB Output is correct
66 Correct 2 ms 604 KB Output is correct
67 Correct 1 ms 604 KB Output is correct
68 Correct 1 ms 604 KB Output is correct
69 Correct 1 ms 604 KB Output is correct
70 Correct 2 ms 600 KB Output is correct
71 Correct 1 ms 604 KB Output is correct
72 Correct 1 ms 604 KB Output is correct
73 Correct 1 ms 604 KB Output is correct
74 Correct 2 ms 604 KB Output is correct
75 Correct 1 ms 604 KB Output is correct
76 Correct 2 ms 860 KB Output is correct
77 Correct 2 ms 860 KB Output is correct
78 Correct 1 ms 860 KB Output is correct
79 Correct 1 ms 856 KB Output is correct
80 Correct 1 ms 604 KB Output is correct
81 Correct 1 ms 604 KB Output is correct
82 Correct 1 ms 604 KB Output is correct
83 Correct 1 ms 604 KB Output is correct
84 Correct 5 ms 604 KB Output is correct
85 Correct 5 ms 692 KB Output is correct
86 Correct 5 ms 604 KB Output is correct
87 Correct 5 ms 764 KB Output is correct
88 Correct 5 ms 604 KB Output is correct
89 Correct 6 ms 2140 KB Output is correct
90 Correct 5 ms 1884 KB Output is correct
91 Correct 6 ms 2140 KB Output is correct
92 Correct 6 ms 2060 KB Output is correct
93 Correct 5 ms 2140 KB Output is correct
94 Correct 5 ms 2396 KB Output is correct
95 Correct 6 ms 2396 KB Output is correct
96 Correct 5 ms 2416 KB Output is correct
97 Correct 5 ms 2140 KB Output is correct
98 Correct 6 ms 2140 KB Output is correct
99 Correct 5 ms 2140 KB Output is correct
100 Correct 6 ms 1884 KB Output is correct
101 Correct 4 ms 672 KB Output is correct
102 Correct 312 ms 3356 KB Output is correct
103 Correct 277 ms 3212 KB Output is correct
104 Correct 453 ms 127080 KB Output is correct
105 Correct 342 ms 8768 KB Output is correct
106 Correct 352 ms 6024 KB Output is correct
107 Correct 464 ms 98008 KB Output is correct
108 Correct 214 ms 96868 KB Output is correct
109 Correct 293 ms 134156 KB Output is correct
110 Correct 856 ms 102536 KB Output is correct
111 Correct 430 ms 103028 KB Output is correct
112 Correct 557 ms 102328 KB Output is correct
113 Correct 498 ms 99572 KB Output is correct
114 Correct 540 ms 100320 KB Output is correct
115 Correct 285 ms 137980 KB Output is correct
116 Correct 576 ms 101084 KB Output is correct
117 Correct 525 ms 117456 KB Output is correct
118 Correct 562 ms 103216 KB Output is correct
119 Correct 378 ms 15296 KB Output is correct
120 Correct 268 ms 3460 KB Output is correct