답안 #849612

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
849612 2023-09-15T05:59:01 Z skittles1412 봉쇄 시간 (IOI23_closing) C++17
83 / 100
1000 ms 118884 KB
#include "bits/extc++.h"

using namespace std;

template <typename T, typename... U>
void dbgh(const T& t, const U&... u) {
    cerr << t;
    ((cerr << " | " << u), ...);
    cerr << endl;
}

#ifdef DEBUG
#define dbg(...)                                           \
    cerr << "L" << __LINE__ << " [" << #__VA_ARGS__ << "]" \
         << ": ";                                          \
    dbgh(__VA_ARGS__)
#else
#define cerr   \
    if (false) \
    cerr
#define dbg(...)
#endif

using ll = long long;
using u64 = uint64_t;

#define endl "\n"
#define long int64_t
#define sz(x) int(std::size(x))

template <typename T>
ostream& operator<<(ostream& out, const vector<T>& arr) {
    out << "[";
    for (int i = 0; i < sz(arr); i++) {
        if (i) {
            out << ", ";
        }
        out << arr[i];
    }
    return out << "]";
}

template <typename Cb>
struct Cmp {
    Cb cb;

    Cmp(Cb cb) : cb(cb) {}

    template <typename T>
    bool operator()(const T& a, const T& b) const {
        return cb(a) < cb(b);
    }
};

vector<vector<pair<int, long>>> edges_to_adj(
    int n,
    const vector<tuple<int, int, long>>& edges) {
    vector<vector<pair<int, long>>> graph(n);

    for (auto& [u, v, w] : edges) {
        graph[u].emplace_back(v, w);
        graph[v].emplace_back(u, w);
    }

    return graph;
}

struct DistDFS {
    vector<long> dist;
    vector<vector<pair<int, long>>> graph;

    DistDFS(int root, int n, const vector<tuple<int, int, long>>& edges)
        : dist(n), graph(edges_to_adj(n, edges)) {
        dfs(root, -1, 0);
    }

    void dfs(int u, int p, long d) {
        dist[u] = d;

        for (auto& [v, w] : graph[u]) {
            if (v == p) {
                continue;
            }

            dfs(v, u, d + w);
        }
    }
};

struct PathDFS {
    int n;
    vector<int> path;
    vector<char> on_path;
    vector<vector<int>> path_subs;
    vector<vector<pair<int, long>>> graph;

    PathDFS(int u0, int u1, int n, const vector<tuple<int, int, long>>& edges)
        : n(n), on_path(n), graph(edges_to_adj(n, edges)) {
        pdfs(u0, -1, u1);

        for (auto& a : path) {
            on_path[a] = true;
        }

        for (auto& a : path) {
            path_subs.emplace_back();
            dfs(a, -1, path_subs.back());
        }
    }

    vector<int> st;

    void pdfs(int u, int p, int targ) {
        st.push_back(u);

        if (u == targ) {
            path = st;
        }

        for (auto& [v, _w] : graph[u]) {
            if (v == p) {
                continue;
            }

            pdfs(v, u, targ);
        }

        st.pop_back();
    }

    void dfs(int u, int p, vector<int>& out) {
        out.push_back(u);

        for (auto& [v, _w] : graph[u]) {
            if (v == p || on_path[v]) {
                continue;
            }

            dfs(v, u, out);
        }
    }
};

struct MArr {
    vector<long> vals;
    vector<int> comp;

    MArr(const vector<long>& vals) : vals(vals), comp(sz(vals)) {
        vector<pair<long, int>> v;
        for (int i = 0; i < sz(vals); i++) {
            v.emplace_back(vals[i], i);
        }
        sort(begin(v), end(v));

        for (int i = 0; i < sz(v); i++) {
            comp[v[i].second] = i;
        }
    }
};

struct Node {
    long sum, last0, last1;
    int cnt;

    Node operator+(const Node& n) const {
        if (n.last1 == -1) {
            return {sum + n.sum, last0, last1, cnt + n.cnt};
        } else if (n.last0 == -1) {
            return {sum + n.sum, last1, n.last1, cnt + n.cnt};
        } else {
            return {sum + n.sum, n.last0, n.last1, cnt + n.cnt};
        }
    }

    Node operator-(const Node& n) const {
        return {sum - n.sum, -1, -1, cnt - n.cnt};
    }

    static Node c_from(long x) {
        return {x, -1, x, 1};
    }

    static Node c_def() {
        return {0, -1, -1, 0};
    }
};

struct ST {
    int n;
    vector<Node> v;

    ST(int _n) : n(1 << (__lg(_n) + 1)), v(2 * n, Node::c_def()) {}

    Node query_point(int ind) const {
        return v[ind + n];
    }

    void update(int ind, const Node& x) {
        ind += n;
        v[ind] = x;
        ind >>= 1;
        for (; ind; ind >>= 1) {
            v[ind] = v[ind * 2] + v[ind * 2 + 1];
        }
    }

    Node query_pref(int ind) const {
        if (ind < 0) {
            return Node::c_def();
        } else if (ind >= n - 1) {
            return v[1];
        }

        Node ans = Node::c_def();

        ind += n + 1;
        for (; ind > 1; ind >>= 1) {
            if (ind & 1) {
                ans = v[ind ^ 1] + ans;
            }
        }
        return ans;
    }

    Node query_all() const {
        return v[1];
    }

    template <typename Cb>
    pair<int, Node> bsearch(int o, int l, int r, const Node& pref, const Cb& cb)
        const {
        if (l == r) {
            return {l - 1, pref};
        }

        int mid = (l + r) / 2, lc = o * 2, rc = lc + 1;
        if (!cb(pref + v[lc])) {
            return bsearch(lc, l, mid, pref, cb);
        } else {
            return bsearch(rc, mid + 1, r, pref + v[lc], cb);
        }
    }

    template <typename Cb>
    pair<int, Node> bsearch(const Cb& cb) const {
        if (cb(v[1])) {
            return {n, v[1]};
        }
        return bsearch(1, 0, n - 1, Node::c_def(), cb);
    }
};

struct VEB {
    static constexpr int MAXD = 3, MAXN = 1 << (6 * MAXD);

    u64 v[MAXD][MAXN >> 6] {};

    void toggle(int ind) {
        auto set = [&](u64& mask, int bit, bool b) -> void {
            if (b) {
                mask |= u64(1) << bit;
            } else {
                mask &= ~(u64(1) << bit);
            }
        };

        v[MAXD - 1][ind >> 6] ^= u64(1) << (ind & 63);
        ind >>= 6;

        for (int i = MAXD - 2; i >= 0; i--) {
            set(v[i][ind >> 6], ind & 63, !!v[i + 1][ind]);
            ind >>= 6;
        }
    }

    optional<int> query_pred(int ind) {
        if (ind <= 0) {
            return {};
        }
        for (int i = MAXD - 1; i >= 0; i--) {
            u64 cur = v[i][ind >> 6] & ((u64(1) << (ind & 63)) - 1);
            if (!cur) {
                ind >>= 6;
                continue;
            }

            ind = (ind & (~63)) | int(__lg(cur));
            for (int j = i + 1; j < MAXD; j++) {
                ind = (ind << 6) | int(__lg(v[j][ind]));
            }
            return ind;
        }
        return {};
    }

    optional<int> query_succ(int ind) {
        for (int i = MAXD - 1; i >= 0; i--) {
            u64 cur = v[i][ind >> 6] >> 1 >> (ind & 63);
            if (!cur) {
                ind >>= 6;
                continue;
            }

            ind = (ind & (~63)) | (__builtin_ctzll(cur) + (ind & 63) + 1);
            for (int j = i + 1; j < MAXD; j++) {
                ind = (ind << 6) | __builtin_ctzll(v[j][ind]);
            }
            return ind;
        }
        return {};
    }
};

struct DS {
    MArr arr[2];
    ST v_st[2];
    VEB v_inds[2];

    DS(const vector<long>& v0, const vector<long>& v1)
        : arr {v0, v1}, v_st {sz(v0), sz(v1)} {}

    void insert(int ind, int x) {
        v_inds[ind].toggle(arr[ind].comp[x]);
        v_st[ind].update(arr[ind].comp[x], Node::c_from(arr[ind].vals[x]));
    }

    void erase(int ind, int x) {
        v_inds[ind].toggle(arr[ind].comp[x]);
        v_st[ind].update(arr[ind].comp[x], Node::c_def());
    }

    int query(long kv) {
        int ans = -1e9;

        auto upd_ans_q0_q1 = [&](const Node& q0, const Node& q1) -> void {
            if (q0.sum + q1.sum <= kv) {
                ans = max(ans, q0.cnt * 2 + q1.cnt);
            }
        };
        auto upd_ans_q0 = [&](const Node& q0) -> void {
            auto q1 = v_st[1]
                     .bsearch([&](const Node& o) -> bool {
                         return q0.sum + o.sum <= kv;
                     })
                     .second;

            upd_ans_q0_q1(q0, q1);
        };
        auto upd_ans = [&](int ind) -> void {
            ind = clamp(ind, -1, v_st[0].n);

            upd_ans_q0(v_st[0].query_pref(ind));
        };

        int l = -1, r = v_st[0].n;
        Node last_q0 = Node::c_def();

        while (r - l > 1) {
            int mid = (l + r) / 2;

            auto q0 = v_st[0].query_pref(mid),
                 q1 = v_st[1]
                          .bsearch([&](const Node& o) -> bool {
                              return q0.sum + o.sum <= kv;
                          })
                          .second;

            upd_ans_q0_q1(q0, q1);
            if (q0.sum + q1.sum <= kv && q1.last1 * 2 > q0.last1) {
                l = mid;
                last_q0 = q0;
            } else {
                r = mid;
            }
        }

        // upd_ans(l);
        // upd_ans(r);
        upd_ans(-1);
        {
            int u =
                v_st[0]
                    .bsearch([&](const Node& o) -> bool { return o.sum <= kv; })
                    .first;
            upd_ans(u);
            upd_ans(u - 1);
        }
        {
            int u = v_st[0]
                        .bsearch([&](const Node& o) -> bool {
                            return o.sum <= kv - v_st[1].query_all().sum;
                        })
                        .first;
            upd_ans(u);
            upd_ans(u + 1);
        }

        {
            int u = l;
            Node q0 = last_q0;

            for (int it = 0; it < 2; it++) {
                auto n_u = v_inds[0].query_succ(u);
                if (!n_u) {
                    break;
                }

                u = n_u.value();
                q0 = q0 + v_st[0].query_point(u);
                upd_ans_q0(q0);
            }
        }
        {
            int u = l;
            Node q0 = last_q0;

            for (int it = 0; it < 2; it++) {
                auto n_u = v_inds[0].query_pred(u);
                if (!n_u) {
                    break;
                }

                u = n_u.value();
                q0 = q0 - v_st[0].query_point(u);
                upd_ans(u);
            }
        }

        return ans;
    }
};

int solve_disjoint(long kv,
                   const vector<long>& dist0,
                   const vector<long>& dist1) {
    vector<long> dists;
    dists.insert(dists.end(), begin(dist0), end(dist0));
    dists.insert(dists.end(), begin(dist1), end(dist1));

    sort(begin(dists), end(dists));

    long sum = 0;
    int i;
    for (i = 0; i < sz(dists); i++) {
        sum += dists[i];
        if (sum > kv) {
            break;
        }
    }

    return i;
}

int solve(int n, int u0, int u1, long kv, vector<tuple<int, int, long>> edges) {
    auto dist0 = DistDFS(u0, n, edges).dist, dist1 = DistDFS(u1, n, edges).dist;
    auto path_dfs = PathDFS(u0, u1, n, edges);
    auto path = path_dfs.path_subs;
    int m = sz(path);

    vector<long> cost1(n), cost2(n), delta(n);

    for (int i = 0; i < n; i++) {
        cost1[i] = min(dist0[i], dist1[i]);
        cost2[i] = max(dist0[i], dist1[i]);
        delta[i] = cost2[i] - cost1[i];
    }

    map<long, vector<int>> mp;

    for (int i = 0; i < m; i++) {
        mp[delta[path[i][0]]].push_back(i);
    }

    DS ds(cost2, cost1);

    int ans = solve_disjoint(kv, dist0, dist1);
    dbg(ans);

    int ans_add = 0;
    long min_cost = 0;
    for (auto& a : path_dfs.path) {
        ans_add++;
        min_cost += cost1[a];
    }

    auto move_vals = [&](vector<int> nodes, bool undo) -> void {
        sort(begin(nodes), end(nodes),
             Cmp([&](int u) -> long { return cost1[u]; }));

        for (auto& u : nodes) {
            if (path_dfs.on_path[u]) {
                ans_add++;
                min_cost += delta[u];
            } else {
                ds.erase(1, u);
                ds.insert(0, u);
            }

            ans = max(ans, ans_add + ds.query(kv - min_cost));
            dbg(ans, ans_add, min_cost);
        }

        if (!undo) {
            return;
        }

        for (auto& u : nodes) {
            if (path_dfs.on_path[u]) {
                ans_add--;
                min_cost -= delta[u];
            } else {
                ds.insert(1, u);
                ds.erase(0, u);
            }
        }
    };

    for (int i = 0; i < n; i++) {
        if (path_dfs.on_path[i]) {
            continue;
        }
        ds.insert(1, i);
    }

    for (auto& [_k, vals] : mp) {
        dbg(vals);
        if (sz(vals) == 1) {
            move_vals(path[vals[0]], false);
            continue;
        }

        assert(sz(vals) == 2);
        dbg(ans_add, min_cost);
        move_vals(path[vals[0]], true);
        dbg(ans_add, min_cost);
        move_vals(path[vals[1]], false);
        move_vals(path[vals[0]], false);
    }

    return ans;
}

int max_score(int n,
              int u0,
              int u1,
              ll kv,
              vector<int> edges_u,
              vector<int> edges_v,
              vector<int> edges_w) {
    {
        DS ds {{6}, {5}};
        ds.insert(1, 0);
        ds.erase(1, 0);
        ds.insert(0, 0);
        ds.insert(1, 0);
        ds.erase(0, 0);
        ds.erase(1, 0);
        ds.insert(0, 0);
        dbg(ds.query(6));
        // return -1;
    }
    vector<tuple<int, int, long>> edges;

    for (int i = 0; i < n - 1; i++) {
        edges.emplace_back(edges_u[i], edges_v[i], edges_w[i]);
    }

    return solve(n, u0, u1, kv, edges);
}
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 600 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 542 ms 99444 KB Output is correct
2 Correct 557 ms 118884 KB Output is correct
3 Correct 253 ms 3772 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 800 KB Output is correct
3 Correct 0 ms 600 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 600 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 600 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 800 KB Output is correct
3 Correct 0 ms 600 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 600 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 600 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 1 ms 600 KB Output is correct
13 Correct 1 ms 600 KB Output is correct
14 Correct 1 ms 1012 KB Output is correct
15 Correct 1 ms 860 KB Output is correct
16 Correct 1 ms 856 KB Output is correct
17 Correct 1 ms 856 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 2 ms 860 KB Output is correct
20 Correct 1 ms 860 KB Output is correct
21 Correct 1 ms 856 KB Output is correct
22 Correct 1 ms 856 KB Output is correct
23 Correct 1 ms 860 KB Output is correct
24 Correct 1 ms 1116 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 800 KB Output is correct
3 Correct 0 ms 600 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 600 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 600 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 1 ms 600 KB Output is correct
13 Correct 1 ms 600 KB Output is correct
14 Correct 1 ms 1012 KB Output is correct
15 Correct 1 ms 860 KB Output is correct
16 Correct 1 ms 856 KB Output is correct
17 Correct 1 ms 856 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 2 ms 860 KB Output is correct
20 Correct 1 ms 860 KB Output is correct
21 Correct 1 ms 856 KB Output is correct
22 Correct 1 ms 856 KB Output is correct
23 Correct 1 ms 860 KB Output is correct
24 Correct 1 ms 1116 KB Output is correct
25 Correct 5 ms 856 KB Output is correct
26 Correct 9 ms 2004 KB Output is correct
27 Correct 7 ms 2296 KB Output is correct
28 Correct 6 ms 2556 KB Output is correct
29 Correct 4 ms 2528 KB Output is correct
30 Correct 8 ms 2296 KB Output is correct
31 Correct 5 ms 2772 KB Output is correct
32 Correct 5 ms 2772 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 800 KB Output is correct
4 Correct 0 ms 600 KB Output is correct
5 Correct 1 ms 600 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 600 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 1 ms 600 KB Output is correct
13 Correct 1 ms 600 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 1 ms 600 KB Output is correct
16 Correct 1 ms 600 KB Output is correct
17 Correct 1 ms 600 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 1 ms 600 KB Output is correct
20 Correct 1 ms 600 KB Output is correct
21 Correct 0 ms 600 KB Output is correct
22 Correct 1 ms 600 KB Output is correct
23 Correct 1 ms 600 KB Output is correct
24 Correct 1 ms 856 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 800 KB Output is correct
4 Correct 0 ms 600 KB Output is correct
5 Correct 1 ms 600 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 1 ms 600 KB Output is correct
13 Correct 1 ms 600 KB Output is correct
14 Correct 1 ms 600 KB Output is correct
15 Correct 1 ms 1012 KB Output is correct
16 Correct 1 ms 860 KB Output is correct
17 Correct 1 ms 856 KB Output is correct
18 Correct 1 ms 856 KB Output is correct
19 Correct 1 ms 600 KB Output is correct
20 Correct 1 ms 604 KB Output is correct
21 Correct 1 ms 600 KB Output is correct
22 Correct 1 ms 600 KB Output is correct
23 Correct 1 ms 600 KB Output is correct
24 Correct 1 ms 600 KB Output is correct
25 Correct 1 ms 600 KB Output is correct
26 Correct 1 ms 604 KB Output is correct
27 Correct 1 ms 600 KB Output is correct
28 Correct 1 ms 600 KB Output is correct
29 Correct 1 ms 600 KB Output is correct
30 Correct 1 ms 604 KB Output is correct
31 Correct 1 ms 600 KB Output is correct
32 Correct 1 ms 600 KB Output is correct
33 Correct 0 ms 600 KB Output is correct
34 Correct 1 ms 600 KB Output is correct
35 Correct 1 ms 600 KB Output is correct
36 Correct 1 ms 856 KB Output is correct
37 Correct 1 ms 600 KB Output is correct
38 Correct 1 ms 600 KB Output is correct
39 Correct 1 ms 600 KB Output is correct
40 Correct 1 ms 600 KB Output is correct
41 Correct 1 ms 600 KB Output is correct
42 Correct 1 ms 604 KB Output is correct
43 Correct 1 ms 860 KB Output is correct
44 Correct 1 ms 600 KB Output is correct
45 Correct 1 ms 856 KB Output is correct
46 Correct 1 ms 600 KB Output is correct
47 Correct 1 ms 856 KB Output is correct
48 Correct 1 ms 600 KB Output is correct
49 Correct 1 ms 600 KB Output is correct
50 Correct 1 ms 600 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 800 KB Output is correct
4 Correct 0 ms 600 KB Output is correct
5 Correct 1 ms 600 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 1 ms 600 KB Output is correct
13 Correct 1 ms 600 KB Output is correct
14 Correct 1 ms 600 KB Output is correct
15 Correct 1 ms 1012 KB Output is correct
16 Correct 1 ms 860 KB Output is correct
17 Correct 1 ms 856 KB Output is correct
18 Correct 1 ms 856 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 2 ms 860 KB Output is correct
21 Correct 1 ms 860 KB Output is correct
22 Correct 1 ms 856 KB Output is correct
23 Correct 1 ms 856 KB Output is correct
24 Correct 1 ms 860 KB Output is correct
25 Correct 1 ms 1116 KB Output is correct
26 Correct 1 ms 600 KB Output is correct
27 Correct 1 ms 604 KB Output is correct
28 Correct 1 ms 600 KB Output is correct
29 Correct 1 ms 600 KB Output is correct
30 Correct 1 ms 600 KB Output is correct
31 Correct 1 ms 600 KB Output is correct
32 Correct 1 ms 600 KB Output is correct
33 Correct 1 ms 604 KB Output is correct
34 Correct 1 ms 600 KB Output is correct
35 Correct 1 ms 600 KB Output is correct
36 Correct 1 ms 600 KB Output is correct
37 Correct 1 ms 604 KB Output is correct
38 Correct 1 ms 600 KB Output is correct
39 Correct 1 ms 600 KB Output is correct
40 Correct 0 ms 600 KB Output is correct
41 Correct 1 ms 600 KB Output is correct
42 Correct 1 ms 600 KB Output is correct
43 Correct 1 ms 856 KB Output is correct
44 Correct 1 ms 600 KB Output is correct
45 Correct 1 ms 600 KB Output is correct
46 Correct 1 ms 600 KB Output is correct
47 Correct 1 ms 600 KB Output is correct
48 Correct 1 ms 600 KB Output is correct
49 Correct 1 ms 604 KB Output is correct
50 Correct 1 ms 860 KB Output is correct
51 Correct 1 ms 600 KB Output is correct
52 Correct 1 ms 856 KB Output is correct
53 Correct 1 ms 600 KB Output is correct
54 Correct 1 ms 856 KB Output is correct
55 Correct 1 ms 600 KB Output is correct
56 Correct 1 ms 600 KB Output is correct
57 Correct 1 ms 600 KB Output is correct
58 Correct 1 ms 600 KB Output is correct
59 Correct 1 ms 856 KB Output is correct
60 Correct 1 ms 860 KB Output is correct
61 Correct 1 ms 856 KB Output is correct
62 Correct 2 ms 856 KB Output is correct
63 Correct 2 ms 856 KB Output is correct
64 Correct 1 ms 856 KB Output is correct
65 Correct 1 ms 856 KB Output is correct
66 Correct 2 ms 856 KB Output is correct
67 Correct 1 ms 856 KB Output is correct
68 Correct 1 ms 856 KB Output is correct
69 Correct 2 ms 860 KB Output is correct
70 Correct 1 ms 856 KB Output is correct
71 Correct 1 ms 856 KB Output is correct
72 Correct 1 ms 856 KB Output is correct
73 Correct 2 ms 860 KB Output is correct
74 Correct 2 ms 856 KB Output is correct
75 Correct 1 ms 856 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 800 KB Output is correct
4 Correct 0 ms 600 KB Output is correct
5 Correct 1 ms 600 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 1 ms 600 KB Output is correct
13 Correct 1 ms 600 KB Output is correct
14 Correct 1 ms 600 KB Output is correct
15 Correct 1 ms 1012 KB Output is correct
16 Correct 1 ms 860 KB Output is correct
17 Correct 1 ms 856 KB Output is correct
18 Correct 1 ms 856 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 2 ms 860 KB Output is correct
21 Correct 1 ms 860 KB Output is correct
22 Correct 1 ms 856 KB Output is correct
23 Correct 1 ms 856 KB Output is correct
24 Correct 1 ms 860 KB Output is correct
25 Correct 1 ms 1116 KB Output is correct
26 Correct 5 ms 856 KB Output is correct
27 Correct 9 ms 2004 KB Output is correct
28 Correct 7 ms 2296 KB Output is correct
29 Correct 6 ms 2556 KB Output is correct
30 Correct 4 ms 2528 KB Output is correct
31 Correct 8 ms 2296 KB Output is correct
32 Correct 5 ms 2772 KB Output is correct
33 Correct 5 ms 2772 KB Output is correct
34 Correct 1 ms 600 KB Output is correct
35 Correct 1 ms 604 KB Output is correct
36 Correct 1 ms 600 KB Output is correct
37 Correct 1 ms 600 KB Output is correct
38 Correct 1 ms 600 KB Output is correct
39 Correct 1 ms 600 KB Output is correct
40 Correct 1 ms 600 KB Output is correct
41 Correct 1 ms 604 KB Output is correct
42 Correct 1 ms 600 KB Output is correct
43 Correct 1 ms 600 KB Output is correct
44 Correct 1 ms 600 KB Output is correct
45 Correct 1 ms 604 KB Output is correct
46 Correct 1 ms 600 KB Output is correct
47 Correct 1 ms 600 KB Output is correct
48 Correct 0 ms 600 KB Output is correct
49 Correct 1 ms 600 KB Output is correct
50 Correct 1 ms 600 KB Output is correct
51 Correct 1 ms 856 KB Output is correct
52 Correct 1 ms 600 KB Output is correct
53 Correct 1 ms 600 KB Output is correct
54 Correct 1 ms 600 KB Output is correct
55 Correct 1 ms 600 KB Output is correct
56 Correct 1 ms 600 KB Output is correct
57 Correct 1 ms 604 KB Output is correct
58 Correct 1 ms 860 KB Output is correct
59 Correct 1 ms 600 KB Output is correct
60 Correct 1 ms 856 KB Output is correct
61 Correct 1 ms 600 KB Output is correct
62 Correct 1 ms 856 KB Output is correct
63 Correct 1 ms 600 KB Output is correct
64 Correct 1 ms 600 KB Output is correct
65 Correct 1 ms 600 KB Output is correct
66 Correct 1 ms 600 KB Output is correct
67 Correct 1 ms 856 KB Output is correct
68 Correct 1 ms 860 KB Output is correct
69 Correct 1 ms 856 KB Output is correct
70 Correct 2 ms 856 KB Output is correct
71 Correct 2 ms 856 KB Output is correct
72 Correct 1 ms 856 KB Output is correct
73 Correct 1 ms 856 KB Output is correct
74 Correct 2 ms 856 KB Output is correct
75 Correct 1 ms 856 KB Output is correct
76 Correct 1 ms 856 KB Output is correct
77 Correct 2 ms 860 KB Output is correct
78 Correct 1 ms 856 KB Output is correct
79 Correct 1 ms 856 KB Output is correct
80 Correct 1 ms 856 KB Output is correct
81 Correct 2 ms 860 KB Output is correct
82 Correct 2 ms 856 KB Output is correct
83 Correct 1 ms 856 KB Output is correct
84 Correct 5 ms 856 KB Output is correct
85 Correct 6 ms 856 KB Output is correct
86 Correct 6 ms 856 KB Output is correct
87 Correct 6 ms 856 KB Output is correct
88 Correct 5 ms 856 KB Output is correct
89 Correct 7 ms 1880 KB Output is correct
90 Correct 6 ms 1884 KB Output is correct
91 Correct 6 ms 1880 KB Output is correct
92 Correct 6 ms 1880 KB Output is correct
93 Correct 5 ms 1880 KB Output is correct
94 Correct 5 ms 2392 KB Output is correct
95 Correct 8 ms 2392 KB Output is correct
96 Correct 5 ms 2136 KB Output is correct
97 Correct 8 ms 2136 KB Output is correct
98 Correct 7 ms 1884 KB Output is correct
99 Correct 5 ms 1880 KB Output is correct
100 Correct 6 ms 1880 KB Output is correct
101 Correct 5 ms 856 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 800 KB Output is correct
4 Correct 0 ms 600 KB Output is correct
5 Correct 1 ms 600 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 1 ms 600 KB Output is correct
13 Correct 1 ms 600 KB Output is correct
14 Correct 1 ms 600 KB Output is correct
15 Correct 1 ms 1012 KB Output is correct
16 Correct 1 ms 860 KB Output is correct
17 Correct 1 ms 856 KB Output is correct
18 Correct 1 ms 856 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 2 ms 860 KB Output is correct
21 Correct 1 ms 860 KB Output is correct
22 Correct 1 ms 856 KB Output is correct
23 Correct 1 ms 856 KB Output is correct
24 Correct 1 ms 860 KB Output is correct
25 Correct 1 ms 1116 KB Output is correct
26 Correct 5 ms 856 KB Output is correct
27 Correct 9 ms 2004 KB Output is correct
28 Correct 7 ms 2296 KB Output is correct
29 Correct 6 ms 2556 KB Output is correct
30 Correct 4 ms 2528 KB Output is correct
31 Correct 8 ms 2296 KB Output is correct
32 Correct 5 ms 2772 KB Output is correct
33 Correct 5 ms 2772 KB Output is correct
34 Correct 1 ms 600 KB Output is correct
35 Correct 1 ms 604 KB Output is correct
36 Correct 1 ms 600 KB Output is correct
37 Correct 1 ms 600 KB Output is correct
38 Correct 1 ms 600 KB Output is correct
39 Correct 1 ms 600 KB Output is correct
40 Correct 1 ms 600 KB Output is correct
41 Correct 1 ms 604 KB Output is correct
42 Correct 1 ms 600 KB Output is correct
43 Correct 1 ms 600 KB Output is correct
44 Correct 1 ms 600 KB Output is correct
45 Correct 1 ms 604 KB Output is correct
46 Correct 1 ms 600 KB Output is correct
47 Correct 1 ms 600 KB Output is correct
48 Correct 0 ms 600 KB Output is correct
49 Correct 1 ms 600 KB Output is correct
50 Correct 1 ms 600 KB Output is correct
51 Correct 1 ms 856 KB Output is correct
52 Correct 1 ms 600 KB Output is correct
53 Correct 1 ms 600 KB Output is correct
54 Correct 1 ms 600 KB Output is correct
55 Correct 1 ms 600 KB Output is correct
56 Correct 1 ms 600 KB Output is correct
57 Correct 1 ms 604 KB Output is correct
58 Correct 1 ms 860 KB Output is correct
59 Correct 1 ms 600 KB Output is correct
60 Correct 1 ms 856 KB Output is correct
61 Correct 1 ms 600 KB Output is correct
62 Correct 1 ms 856 KB Output is correct
63 Correct 1 ms 600 KB Output is correct
64 Correct 1 ms 600 KB Output is correct
65 Correct 1 ms 600 KB Output is correct
66 Correct 1 ms 600 KB Output is correct
67 Correct 1 ms 856 KB Output is correct
68 Correct 1 ms 860 KB Output is correct
69 Correct 1 ms 856 KB Output is correct
70 Correct 2 ms 856 KB Output is correct
71 Correct 2 ms 856 KB Output is correct
72 Correct 1 ms 856 KB Output is correct
73 Correct 1 ms 856 KB Output is correct
74 Correct 2 ms 856 KB Output is correct
75 Correct 1 ms 856 KB Output is correct
76 Correct 1 ms 856 KB Output is correct
77 Correct 2 ms 860 KB Output is correct
78 Correct 1 ms 856 KB Output is correct
79 Correct 1 ms 856 KB Output is correct
80 Correct 1 ms 856 KB Output is correct
81 Correct 2 ms 860 KB Output is correct
82 Correct 2 ms 856 KB Output is correct
83 Correct 1 ms 856 KB Output is correct
84 Correct 5 ms 856 KB Output is correct
85 Correct 6 ms 856 KB Output is correct
86 Correct 6 ms 856 KB Output is correct
87 Correct 6 ms 856 KB Output is correct
88 Correct 5 ms 856 KB Output is correct
89 Correct 7 ms 1880 KB Output is correct
90 Correct 6 ms 1884 KB Output is correct
91 Correct 6 ms 1880 KB Output is correct
92 Correct 6 ms 1880 KB Output is correct
93 Correct 5 ms 1880 KB Output is correct
94 Correct 5 ms 2392 KB Output is correct
95 Correct 8 ms 2392 KB Output is correct
96 Correct 5 ms 2136 KB Output is correct
97 Correct 8 ms 2136 KB Output is correct
98 Correct 7 ms 1884 KB Output is correct
99 Correct 5 ms 1880 KB Output is correct
100 Correct 6 ms 1880 KB Output is correct
101 Correct 5 ms 856 KB Output is correct
102 Correct 360 ms 3664 KB Output is correct
103 Correct 323 ms 3148 KB Output is correct
104 Correct 477 ms 106340 KB Output is correct
105 Correct 425 ms 7476 KB Output is correct
106 Correct 487 ms 5556 KB Output is correct
107 Correct 744 ms 77548 KB Output is correct
108 Correct 243 ms 77884 KB Output is correct
109 Correct 413 ms 115968 KB Output is correct
110 Execution timed out 1051 ms 82276 KB Time limit exceeded
111 Halted 0 ms 0 KB -