Submission #849610

# Submission time Handle Problem Language Result Execution time Memory
849610 2023-09-15T05:41:27 Z skittles1412 Closing Time (IOI23_closing) C++17
83 / 100
1000 ms 119460 KB
#include "bits/extc++.h"

using namespace std;

template <typename T, typename... U>
void dbgh(const T& t, const U&... u) {
    cerr << t;
    ((cerr << " | " << u), ...);
    cerr << endl;
}

#ifdef DEBUG
#define dbg(...)                                           \
    cerr << "L" << __LINE__ << " [" << #__VA_ARGS__ << "]" \
         << ": ";                                          \
    dbgh(__VA_ARGS__)
#else
#define cerr   \
    if (false) \
    cerr
#define dbg(...)
#endif

using ll = long long;
using u64 = uint64_t;

#define endl "\n"
#define long int64_t
#define sz(x) int(std::size(x))

template <typename T>
ostream& operator<<(ostream& out, const vector<T>& arr) {
    out << "[";
    for (int i = 0; i < sz(arr); i++) {
        if (i) {
            out << ", ";
        }
        out << arr[i];
    }
    return out << "]";
}

template <typename Cb>
struct Cmp {
    Cb cb;

    Cmp(Cb cb) : cb(cb) {}

    template <typename T>
    bool operator()(const T& a, const T& b) const {
        return cb(a) < cb(b);
    }
};

vector<vector<pair<int, long>>> edges_to_adj(
    int n,
    const vector<tuple<int, int, long>>& edges) {
    vector<vector<pair<int, long>>> graph(n);

    for (auto& [u, v, w] : edges) {
        graph[u].emplace_back(v, w);
        graph[v].emplace_back(u, w);
    }

    return graph;
}

struct DistDFS {
    vector<long> dist;
    vector<vector<pair<int, long>>> graph;

    DistDFS(int root, int n, const vector<tuple<int, int, long>>& edges)
        : dist(n), graph(edges_to_adj(n, edges)) {
        dfs(root, -1, 0);
    }

    void dfs(int u, int p, long d) {
        dist[u] = d;

        for (auto& [v, w] : graph[u]) {
            if (v == p) {
                continue;
            }

            dfs(v, u, d + w);
        }
    }
};

struct PathDFS {
    int n;
    vector<int> path;
    vector<char> on_path;
    vector<vector<int>> path_subs;
    vector<vector<pair<int, long>>> graph;

    PathDFS(int u0, int u1, int n, const vector<tuple<int, int, long>>& edges)
        : n(n), on_path(n), graph(edges_to_adj(n, edges)) {
        pdfs(u0, -1, u1);

        for (auto& a : path) {
            on_path[a] = true;
        }

        for (auto& a : path) {
            path_subs.emplace_back();
            dfs(a, -1, path_subs.back());
        }
    }

    vector<int> st;

    void pdfs(int u, int p, int targ) {
        st.push_back(u);

        if (u == targ) {
            path = st;
        }

        for (auto& [v, _w] : graph[u]) {
            if (v == p) {
                continue;
            }

            pdfs(v, u, targ);
        }

        st.pop_back();
    }

    void dfs(int u, int p, vector<int>& out) {
        out.push_back(u);

        for (auto& [v, _w] : graph[u]) {
            if (v == p || on_path[v]) {
                continue;
            }

            dfs(v, u, out);
        }
    }
};

struct MArr {
    vector<long> vals;
    vector<int> comp;

    MArr(const vector<long>& vals) : vals(vals), comp(sz(vals)) {
        vector<pair<long, int>> v;
        for (int i = 0; i < sz(vals); i++) {
            v.emplace_back(vals[i], i);
        }
        sort(begin(v), end(v));

        for (int i = 0; i < sz(v); i++) {
            comp[v[i].second] = i;
        }
    }
};

struct Node {
    long sum, last0, last1;
    int cnt;

    Node operator+(const Node& n) const {
        if (n.last1 == -1) {
            return {sum + n.sum, last0, last1, cnt + n.cnt};
        } else if (n.last0 == -1) {
            return {sum + n.sum, last1, n.last1, cnt + n.cnt};
        } else {
            return {sum + n.sum, n.last0, n.last1, cnt + n.cnt};
        }
    }

    static Node c_from(long x) {
        return {x, -1, x, 1};
    }

    static Node c_def() {
        return {0, -1, -1, 0};
    }
};

struct ST {
    int n;
    vector<Node> v;

    ST(int _n) : n(1 << (__lg(_n) + 1)), v(2 * n, Node::c_def()) {}

    void update(int ind, const Node& x) {
        ind += n;
        v[ind] = x;
        ind >>= 1;
        for (; ind; ind >>= 1) {
            v[ind] = v[ind * 2] + v[ind * 2 + 1];
        }
    }

    Node query_pref(int ind) const {
        if (ind < 0) {
            return Node::c_def();
        } else if (ind >= n - 1) {
            return v[1];
        }

        Node ans = Node::c_def();

        ind += n + 1;
        for (; ind > 1; ind >>= 1) {
            if (ind & 1) {
                ans = v[ind ^ 1] + ans;
            }
        }
        return ans;
    }

    Node query_all() const {
        return v[1];
    }

    template <typename Cb>
    pair<int, Node> bsearch(int o, int l, int r, const Node& pref, const Cb& cb)
        const {
        if (l == r) {
            return {l - 1, pref};
        }

        int mid = (l + r) / 2, lc = o * 2, rc = lc + 1;
        if (!cb(pref + v[lc])) {
            return bsearch(lc, l, mid, pref, cb);
        } else {
            return bsearch(rc, mid + 1, r, pref + v[lc], cb);
        }
    }

    template <typename Cb>
    pair<int, Node> bsearch(const Cb& cb) const {
        if (cb(v[1])) {
            return {n, v[1]};
        }
        return bsearch(1, 0, n - 1, Node::c_def(), cb);
    }
};

struct VEB {
    static constexpr int MAXD = 3, MAXN = 1 << (6 * MAXD);

    u64 v[MAXD][MAXN >> 6] {};

    void toggle(int ind) {
        auto set = [&](u64& mask, int bit, bool b) -> void {
            if (b) {
                mask |= u64(1) << bit;
            } else {
                mask &= ~(u64(1) << bit);
            }
        };

        v[MAXD - 1][ind >> 6] ^= u64(1) << (ind & 63);
        ind >>= 6;

        for (int i = MAXD - 2; i >= 0; i--) {
            set(v[i][ind >> 6], ind & 63, !!v[i + 1][ind]);
            ind >>= 6;
        }
    }

    optional<int> query_pred(int ind) {
        for (int i = MAXD - 1; i >= 0; i--) {
            u64 cur = v[i][ind >> 6] & ((u64(1) << (ind & 63)) - 1);
            if (!cur) {
                ind >>= 6;
                continue;
            }

            ind = (ind & (~63)) | int(__lg(cur));
            for (int j = i + 1; j < MAXD; j++) {
                ind = (ind << 6) | int(__lg(v[j][ind]));
            }
            return ind;
        }
        return {};
    }

    optional<int> query_succ(int ind) {
        if (ind <= 0) {
            return {};
        }
        for (int i = MAXD - 1; i >= 0; i--) {
            u64 cur = v[i][ind >> 6] >> 1 >> (ind & 63);
            if (!cur) {
                ind >>= 6;
                continue;
            }

            ind = (ind & (~63)) | (__builtin_ctzll(cur) + (ind & 63) + 1);
            for (int j = i + 1; j < MAXD; j++) {
                ind = (ind << 6) | __builtin_ctzll(v[j][ind]);
            }
            return ind;
        }
        return {};
    }
};

struct DS {
    MArr arr[2];
    ST v_st[2];
    VEB v_inds[2];

    DS(const vector<long>& v0, const vector<long>& v1)
        : arr {v0, v1}, v_st {sz(v0), sz(v1)} {}

    void insert(int ind, int x) {
        dbg("+", ind, arr[ind].vals[x]);
        v_inds[ind].toggle(arr[ind].comp[x]);
        // v_inds[ind].insert(arr[ind].comp[x]);
        v_st[ind].update(arr[ind].comp[x], Node::c_from(arr[ind].vals[x]));
    }

    void erase(int ind, int x) {
        dbg("-", ind, arr[ind].vals[x]);
        v_inds[ind].toggle(arr[ind].comp[x]);
        // v_inds[ind].insert(arr[ind].comp[x]);
        v_st[ind].update(arr[ind].comp[x], Node::c_def());
    }

    int query(long kv) {
        int ans = -1e9;

        auto upd_ans = [&](int ind) -> void {
            ind = clamp(ind, -1, v_st[0].n);

            auto q0 = v_st[0].query_pref(ind),
                 q1 = v_st[1]
                          .bsearch([&](const Node& o) -> bool {
                              return q0.sum + o.sum <= kv;
                          })
                          .second;

            if (q0.sum + q1.sum <= kv) {
                ans = max(ans, q0.cnt * 2 + q1.cnt);
            }
        };

        int l = -1, r = v_st[0].n;
        while (r - l > 1) {
            int mid = (l + r) / 2;

            auto q0 = v_st[0].query_pref(mid),
                 q1 = v_st[1]
                          .bsearch([&](const Node& o) -> bool {
                              return q0.sum + o.sum <= kv;
                          })
                          .second;

            if (q0.sum + q1.sum <= kv && q1.last1 * 2 > q0.last1) {
                l = mid;
            } else {
                r = mid;
            }
        }

        upd_ans(l);
        // upd_ans(r);
        upd_ans(-1);
        {
            int u =
                v_st[0]
                    .bsearch([&](const Node& o) -> bool { return o.sum <= kv; })
                    .first;
            upd_ans(u);
            upd_ans(u - 1);
        }
        {
            int u = v_st[0]
                        .bsearch([&](const Node& o) -> bool {
                            return o.sum <= kv - v_st[1].query_all().sum;
                        })
                        .first;
            upd_ans(u);
            upd_ans(u + 1);
        }

        auto upd_rep = [&](auto cb) -> void {
            int u = l;

            for (int it = 0; it < 2; it++) {
                auto n_u = cb(u);
                if (!n_u) {
                    return;
                }

                u = n_u.value();
                upd_ans(u);
            }
        };

        upd_rep([&](int u) -> optional<int> {
            return v_inds[0].query_succ(u);
            // auto it = v_inds[0].lower_bound(u);
            // if (it == v_inds[0].begin()) {
            //     return {};
            // }
            // return *(--it);
        });
        upd_rep([&](int u) -> optional<int> {
            return v_inds[0].query_pred(u);
            // auto it = v_inds[0].upper_bound(u);
            // if (it == v_inds[0].end()) {
            //     return {};
            // }
            // return *it;
        });

        return ans;
    }
};

int solve_disjoint(long kv,
                   const vector<long>& dist0,
                   const vector<long>& dist1) {
    vector<long> dists;
    dists.insert(dists.end(), begin(dist0), end(dist0));
    dists.insert(dists.end(), begin(dist1), end(dist1));

    sort(begin(dists), end(dists));

    long sum = 0;
    int i;
    for (i = 0; i < sz(dists); i++) {
        sum += dists[i];
        if (sum > kv) {
            break;
        }
    }

    return i;
}

int solve(int n, int u0, int u1, long kv, vector<tuple<int, int, long>> edges) {
    auto dist0 = DistDFS(u0, n, edges).dist, dist1 = DistDFS(u1, n, edges).dist;
    auto path_dfs = PathDFS(u0, u1, n, edges);
    auto path = path_dfs.path_subs;
    int m = sz(path);

    vector<long> cost1(n), cost2(n), delta(n);

    for (int i = 0; i < n; i++) {
        cost1[i] = min(dist0[i], dist1[i]);
        cost2[i] = max(dist0[i], dist1[i]);
        delta[i] = cost2[i] - cost1[i];
    }

    map<long, vector<int>> mp;

    for (int i = 0; i < m; i++) {
        mp[delta[path[i][0]]].push_back(i);
    }

    DS ds(cost2, cost1);

    int ans = solve_disjoint(kv, dist0, dist1);
    dbg(ans);

    int ans_add = 0;
    long min_cost = 0;
    for (auto& a : path_dfs.path) {
        ans_add++;
        min_cost += cost1[a];
    }

    auto move_vals = [&](vector<int> nodes, bool undo) -> void {
        sort(begin(nodes), end(nodes),
             Cmp([&](int u) -> long { return cost1[u]; }));

        for (auto& u : nodes) {
            if (path_dfs.on_path[u]) {
                ans_add++;
                min_cost += delta[u];
            } else {
                ds.erase(1, u);
                ds.insert(0, u);
            }

            ans = max(ans, ans_add + ds.query(kv - min_cost));
            dbg(ans, ans_add, min_cost);
        }

        if (!undo) {
            return;
        }

        for (auto& u : nodes) {
            if (path_dfs.on_path[u]) {
                ans_add--;
                min_cost -= delta[u];
            } else {
                ds.insert(1, u);
                ds.erase(0, u);
            }
        }
    };

    for (int i = 0; i < n; i++) {
        if (path_dfs.on_path[i]) {
            continue;
        }
        ds.insert(1, i);
    }

    for (auto& [_k, vals] : mp) {
        dbg(vals);
        if (sz(vals) == 1) {
            move_vals(path[vals[0]], false);
            continue;
        }

        assert(sz(vals) == 2);
        dbg(ans_add, min_cost);
        move_vals(path[vals[0]], true);
        dbg(ans_add, min_cost);
        move_vals(path[vals[1]], false);
        move_vals(path[vals[0]], false);
    }

    return ans;
}

int max_score(int n,
              int u0,
              int u1,
              ll kv,
              vector<int> edges_u,
              vector<int> edges_v,
              vector<int> edges_w) {
    {
        DS ds {{6}, {5}};
        ds.insert(1, 0);
        ds.erase(1, 0);
        ds.insert(0, 0);
        ds.insert(1, 0);
        ds.erase(0, 0);
        ds.erase(1, 0);
        ds.insert(0, 0);
        dbg(ds.query(6));
        // return -1;
    }
    vector<tuple<int, int, long>> edges;

    for (int i = 0; i < n - 1; i++) {
        edges.emplace_back(edges_u[i], edges_v[i], edges_w[i]);
    }

    return solve(n, u0, u1, kv, edges);
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 565 ms 98792 KB Output is correct
2 Correct 619 ms 119460 KB Output is correct
3 Correct 272 ms 3780 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 1 ms 604 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 860 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 860 KB Output is correct
17 Correct 1 ms 860 KB Output is correct
18 Correct 2 ms 600 KB Output is correct
19 Correct 2 ms 860 KB Output is correct
20 Correct 1 ms 860 KB Output is correct
21 Correct 1 ms 860 KB Output is correct
22 Correct 1 ms 860 KB Output is correct
23 Correct 1 ms 1116 KB Output is correct
24 Correct 1 ms 1116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 1 ms 604 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 860 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 860 KB Output is correct
17 Correct 1 ms 860 KB Output is correct
18 Correct 2 ms 600 KB Output is correct
19 Correct 2 ms 860 KB Output is correct
20 Correct 1 ms 860 KB Output is correct
21 Correct 1 ms 860 KB Output is correct
22 Correct 1 ms 860 KB Output is correct
23 Correct 1 ms 1116 KB Output is correct
24 Correct 1 ms 1116 KB Output is correct
25 Correct 6 ms 860 KB Output is correct
26 Correct 9 ms 2004 KB Output is correct
27 Correct 7 ms 2044 KB Output is correct
28 Correct 5 ms 2556 KB Output is correct
29 Correct 5 ms 2532 KB Output is correct
30 Correct 6 ms 2048 KB Output is correct
31 Correct 5 ms 2776 KB Output is correct
32 Correct 5 ms 2772 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 0 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 0 ms 604 KB Output is correct
13 Correct 0 ms 604 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 1 ms 604 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 0 ms 604 KB Output is correct
21 Correct 0 ms 604 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 1 ms 604 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 1 ms 860 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 1 ms 860 KB Output is correct
18 Correct 1 ms 860 KB Output is correct
19 Correct 1 ms 600 KB Output is correct
20 Correct 1 ms 604 KB Output is correct
21 Correct 0 ms 604 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 0 ms 604 KB Output is correct
25 Correct 0 ms 604 KB Output is correct
26 Correct 1 ms 604 KB Output is correct
27 Correct 1 ms 604 KB Output is correct
28 Correct 1 ms 604 KB Output is correct
29 Correct 1 ms 604 KB Output is correct
30 Correct 1 ms 604 KB Output is correct
31 Correct 1 ms 604 KB Output is correct
32 Correct 0 ms 604 KB Output is correct
33 Correct 0 ms 604 KB Output is correct
34 Correct 1 ms 604 KB Output is correct
35 Correct 1 ms 604 KB Output is correct
36 Correct 1 ms 604 KB Output is correct
37 Correct 1 ms 604 KB Output is correct
38 Correct 1 ms 800 KB Output is correct
39 Correct 1 ms 604 KB Output is correct
40 Correct 1 ms 856 KB Output is correct
41 Correct 1 ms 860 KB Output is correct
42 Correct 1 ms 860 KB Output is correct
43 Correct 1 ms 860 KB Output is correct
44 Correct 1 ms 604 KB Output is correct
45 Correct 1 ms 860 KB Output is correct
46 Correct 1 ms 604 KB Output is correct
47 Correct 1 ms 600 KB Output is correct
48 Correct 1 ms 600 KB Output is correct
49 Correct 1 ms 604 KB Output is correct
50 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 1 ms 604 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 1 ms 860 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 1 ms 860 KB Output is correct
18 Correct 1 ms 860 KB Output is correct
19 Correct 2 ms 600 KB Output is correct
20 Correct 2 ms 860 KB Output is correct
21 Correct 1 ms 860 KB Output is correct
22 Correct 1 ms 860 KB Output is correct
23 Correct 1 ms 860 KB Output is correct
24 Correct 1 ms 1116 KB Output is correct
25 Correct 1 ms 1116 KB Output is correct
26 Correct 1 ms 600 KB Output is correct
27 Correct 1 ms 604 KB Output is correct
28 Correct 0 ms 604 KB Output is correct
29 Correct 1 ms 604 KB Output is correct
30 Correct 1 ms 604 KB Output is correct
31 Correct 0 ms 604 KB Output is correct
32 Correct 0 ms 604 KB Output is correct
33 Correct 1 ms 604 KB Output is correct
34 Correct 1 ms 604 KB Output is correct
35 Correct 1 ms 604 KB Output is correct
36 Correct 1 ms 604 KB Output is correct
37 Correct 1 ms 604 KB Output is correct
38 Correct 1 ms 604 KB Output is correct
39 Correct 0 ms 604 KB Output is correct
40 Correct 0 ms 604 KB Output is correct
41 Correct 1 ms 604 KB Output is correct
42 Correct 1 ms 604 KB Output is correct
43 Correct 1 ms 604 KB Output is correct
44 Correct 1 ms 604 KB Output is correct
45 Correct 1 ms 800 KB Output is correct
46 Correct 1 ms 604 KB Output is correct
47 Correct 1 ms 856 KB Output is correct
48 Correct 1 ms 860 KB Output is correct
49 Correct 1 ms 860 KB Output is correct
50 Correct 1 ms 860 KB Output is correct
51 Correct 1 ms 604 KB Output is correct
52 Correct 1 ms 860 KB Output is correct
53 Correct 1 ms 604 KB Output is correct
54 Correct 1 ms 600 KB Output is correct
55 Correct 1 ms 600 KB Output is correct
56 Correct 1 ms 604 KB Output is correct
57 Correct 1 ms 604 KB Output is correct
58 Correct 1 ms 856 KB Output is correct
59 Correct 1 ms 856 KB Output is correct
60 Correct 1 ms 860 KB Output is correct
61 Correct 1 ms 860 KB Output is correct
62 Correct 1 ms 856 KB Output is correct
63 Correct 2 ms 1016 KB Output is correct
64 Correct 2 ms 860 KB Output is correct
65 Correct 1 ms 860 KB Output is correct
66 Correct 2 ms 860 KB Output is correct
67 Correct 1 ms 860 KB Output is correct
68 Correct 1 ms 868 KB Output is correct
69 Correct 2 ms 860 KB Output is correct
70 Correct 1 ms 860 KB Output is correct
71 Correct 1 ms 860 KB Output is correct
72 Correct 1 ms 860 KB Output is correct
73 Correct 1 ms 860 KB Output is correct
74 Correct 2 ms 860 KB Output is correct
75 Correct 1 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 1 ms 604 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 1 ms 860 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 1 ms 860 KB Output is correct
18 Correct 1 ms 860 KB Output is correct
19 Correct 2 ms 600 KB Output is correct
20 Correct 2 ms 860 KB Output is correct
21 Correct 1 ms 860 KB Output is correct
22 Correct 1 ms 860 KB Output is correct
23 Correct 1 ms 860 KB Output is correct
24 Correct 1 ms 1116 KB Output is correct
25 Correct 1 ms 1116 KB Output is correct
26 Correct 6 ms 860 KB Output is correct
27 Correct 9 ms 2004 KB Output is correct
28 Correct 7 ms 2044 KB Output is correct
29 Correct 5 ms 2556 KB Output is correct
30 Correct 5 ms 2532 KB Output is correct
31 Correct 6 ms 2048 KB Output is correct
32 Correct 5 ms 2776 KB Output is correct
33 Correct 5 ms 2772 KB Output is correct
34 Correct 1 ms 600 KB Output is correct
35 Correct 1 ms 604 KB Output is correct
36 Correct 0 ms 604 KB Output is correct
37 Correct 1 ms 604 KB Output is correct
38 Correct 1 ms 604 KB Output is correct
39 Correct 0 ms 604 KB Output is correct
40 Correct 0 ms 604 KB Output is correct
41 Correct 1 ms 604 KB Output is correct
42 Correct 1 ms 604 KB Output is correct
43 Correct 1 ms 604 KB Output is correct
44 Correct 1 ms 604 KB Output is correct
45 Correct 1 ms 604 KB Output is correct
46 Correct 1 ms 604 KB Output is correct
47 Correct 0 ms 604 KB Output is correct
48 Correct 0 ms 604 KB Output is correct
49 Correct 1 ms 604 KB Output is correct
50 Correct 1 ms 604 KB Output is correct
51 Correct 1 ms 604 KB Output is correct
52 Correct 1 ms 604 KB Output is correct
53 Correct 1 ms 800 KB Output is correct
54 Correct 1 ms 604 KB Output is correct
55 Correct 1 ms 856 KB Output is correct
56 Correct 1 ms 860 KB Output is correct
57 Correct 1 ms 860 KB Output is correct
58 Correct 1 ms 860 KB Output is correct
59 Correct 1 ms 604 KB Output is correct
60 Correct 1 ms 860 KB Output is correct
61 Correct 1 ms 604 KB Output is correct
62 Correct 1 ms 600 KB Output is correct
63 Correct 1 ms 600 KB Output is correct
64 Correct 1 ms 604 KB Output is correct
65 Correct 1 ms 604 KB Output is correct
66 Correct 1 ms 856 KB Output is correct
67 Correct 1 ms 856 KB Output is correct
68 Correct 1 ms 860 KB Output is correct
69 Correct 1 ms 860 KB Output is correct
70 Correct 1 ms 856 KB Output is correct
71 Correct 2 ms 1016 KB Output is correct
72 Correct 2 ms 860 KB Output is correct
73 Correct 1 ms 860 KB Output is correct
74 Correct 2 ms 860 KB Output is correct
75 Correct 1 ms 860 KB Output is correct
76 Correct 1 ms 868 KB Output is correct
77 Correct 2 ms 860 KB Output is correct
78 Correct 1 ms 860 KB Output is correct
79 Correct 1 ms 860 KB Output is correct
80 Correct 1 ms 860 KB Output is correct
81 Correct 1 ms 860 KB Output is correct
82 Correct 2 ms 860 KB Output is correct
83 Correct 1 ms 860 KB Output is correct
84 Correct 6 ms 860 KB Output is correct
85 Correct 6 ms 860 KB Output is correct
86 Correct 6 ms 920 KB Output is correct
87 Correct 7 ms 860 KB Output is correct
88 Correct 5 ms 860 KB Output is correct
89 Correct 8 ms 2088 KB Output is correct
90 Correct 7 ms 1884 KB Output is correct
91 Correct 6 ms 1880 KB Output is correct
92 Correct 6 ms 1884 KB Output is correct
93 Correct 5 ms 1884 KB Output is correct
94 Correct 6 ms 2396 KB Output is correct
95 Correct 8 ms 2396 KB Output is correct
96 Correct 7 ms 2136 KB Output is correct
97 Correct 5 ms 2140 KB Output is correct
98 Correct 7 ms 1884 KB Output is correct
99 Correct 5 ms 1884 KB Output is correct
100 Correct 6 ms 1880 KB Output is correct
101 Correct 5 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 1 ms 604 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 1 ms 860 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 1 ms 860 KB Output is correct
18 Correct 1 ms 860 KB Output is correct
19 Correct 2 ms 600 KB Output is correct
20 Correct 2 ms 860 KB Output is correct
21 Correct 1 ms 860 KB Output is correct
22 Correct 1 ms 860 KB Output is correct
23 Correct 1 ms 860 KB Output is correct
24 Correct 1 ms 1116 KB Output is correct
25 Correct 1 ms 1116 KB Output is correct
26 Correct 6 ms 860 KB Output is correct
27 Correct 9 ms 2004 KB Output is correct
28 Correct 7 ms 2044 KB Output is correct
29 Correct 5 ms 2556 KB Output is correct
30 Correct 5 ms 2532 KB Output is correct
31 Correct 6 ms 2048 KB Output is correct
32 Correct 5 ms 2776 KB Output is correct
33 Correct 5 ms 2772 KB Output is correct
34 Correct 1 ms 600 KB Output is correct
35 Correct 1 ms 604 KB Output is correct
36 Correct 0 ms 604 KB Output is correct
37 Correct 1 ms 604 KB Output is correct
38 Correct 1 ms 604 KB Output is correct
39 Correct 0 ms 604 KB Output is correct
40 Correct 0 ms 604 KB Output is correct
41 Correct 1 ms 604 KB Output is correct
42 Correct 1 ms 604 KB Output is correct
43 Correct 1 ms 604 KB Output is correct
44 Correct 1 ms 604 KB Output is correct
45 Correct 1 ms 604 KB Output is correct
46 Correct 1 ms 604 KB Output is correct
47 Correct 0 ms 604 KB Output is correct
48 Correct 0 ms 604 KB Output is correct
49 Correct 1 ms 604 KB Output is correct
50 Correct 1 ms 604 KB Output is correct
51 Correct 1 ms 604 KB Output is correct
52 Correct 1 ms 604 KB Output is correct
53 Correct 1 ms 800 KB Output is correct
54 Correct 1 ms 604 KB Output is correct
55 Correct 1 ms 856 KB Output is correct
56 Correct 1 ms 860 KB Output is correct
57 Correct 1 ms 860 KB Output is correct
58 Correct 1 ms 860 KB Output is correct
59 Correct 1 ms 604 KB Output is correct
60 Correct 1 ms 860 KB Output is correct
61 Correct 1 ms 604 KB Output is correct
62 Correct 1 ms 600 KB Output is correct
63 Correct 1 ms 600 KB Output is correct
64 Correct 1 ms 604 KB Output is correct
65 Correct 1 ms 604 KB Output is correct
66 Correct 1 ms 856 KB Output is correct
67 Correct 1 ms 856 KB Output is correct
68 Correct 1 ms 860 KB Output is correct
69 Correct 1 ms 860 KB Output is correct
70 Correct 1 ms 856 KB Output is correct
71 Correct 2 ms 1016 KB Output is correct
72 Correct 2 ms 860 KB Output is correct
73 Correct 1 ms 860 KB Output is correct
74 Correct 2 ms 860 KB Output is correct
75 Correct 1 ms 860 KB Output is correct
76 Correct 1 ms 868 KB Output is correct
77 Correct 2 ms 860 KB Output is correct
78 Correct 1 ms 860 KB Output is correct
79 Correct 1 ms 860 KB Output is correct
80 Correct 1 ms 860 KB Output is correct
81 Correct 1 ms 860 KB Output is correct
82 Correct 2 ms 860 KB Output is correct
83 Correct 1 ms 860 KB Output is correct
84 Correct 6 ms 860 KB Output is correct
85 Correct 6 ms 860 KB Output is correct
86 Correct 6 ms 920 KB Output is correct
87 Correct 7 ms 860 KB Output is correct
88 Correct 5 ms 860 KB Output is correct
89 Correct 8 ms 2088 KB Output is correct
90 Correct 7 ms 1884 KB Output is correct
91 Correct 6 ms 1880 KB Output is correct
92 Correct 6 ms 1884 KB Output is correct
93 Correct 5 ms 1884 KB Output is correct
94 Correct 6 ms 2396 KB Output is correct
95 Correct 8 ms 2396 KB Output is correct
96 Correct 7 ms 2136 KB Output is correct
97 Correct 5 ms 2140 KB Output is correct
98 Correct 7 ms 1884 KB Output is correct
99 Correct 5 ms 1884 KB Output is correct
100 Correct 6 ms 1880 KB Output is correct
101 Correct 5 ms 860 KB Output is correct
102 Correct 349 ms 3536 KB Output is correct
103 Correct 325 ms 3396 KB Output is correct
104 Correct 482 ms 106776 KB Output is correct
105 Correct 442 ms 7680 KB Output is correct
106 Correct 493 ms 5552 KB Output is correct
107 Correct 835 ms 77748 KB Output is correct
108 Correct 261 ms 80036 KB Output is correct
109 Correct 437 ms 115704 KB Output is correct
110 Execution timed out 1037 ms 82152 KB Time limit exceeded
111 Halted 0 ms 0 KB -