Submission #849607

# Submission time Handle Problem Language Result Execution time Memory
849607 2023-09-15T05:18:56 Z skittles1412 Closing Time (IOI23_closing) C++17
83 / 100
1000 ms 136588 KB
#pragma GCC optimize("Ofast")
#pragma GCC target("avx2")

#include "bits/extc++.h"

using namespace std;

template <typename T, typename... U>
void dbgh(const T& t, const U&... u) {
    cerr << t;
    ((cerr << " | " << u), ...);
    cerr << endl;
}

#ifdef DEBUG
#define dbg(...)                                           \
    cerr << "L" << __LINE__ << " [" << #__VA_ARGS__ << "]" \
         << ": ";                                          \
    dbgh(__VA_ARGS__)
#else
#define cerr   \
    if (false) \
    cerr
#define dbg(...)
#endif

using ll = long long;

#define endl "\n"
#define long int64_t
#define sz(x) int(std::size(x))

template <typename T>
ostream& operator<<(ostream& out, const vector<T>& arr) {
    out << "[";
    for (int i = 0; i < sz(arr); i++) {
        if (i) {
            out << ", ";
        }
        out << arr[i];
    }
    return out << "]";
}

template <typename Cb>
struct Cmp {
    Cb cb;

    Cmp(Cb cb) : cb(cb) {}

    template <typename T>
    bool operator()(const T& a, const T& b) const {
        return cb(a) < cb(b);
    }
};

vector<vector<pair<int, long>>> edges_to_adj(
    int n,
    const vector<tuple<int, int, long>>& edges) {
    vector<vector<pair<int, long>>> graph(n);

    for (auto& [u, v, w] : edges) {
        graph[u].emplace_back(v, w);
        graph[v].emplace_back(u, w);
    }

    return graph;
}

struct DistDFS {
    vector<long> dist;
    vector<vector<pair<int, long>>> graph;

    DistDFS(int root, int n, const vector<tuple<int, int, long>>& edges)
        : dist(n), graph(edges_to_adj(n, edges)) {
        dfs(root, -1, 0);
    }

    void dfs(int u, int p, long d) {
        dist[u] = d;

        for (auto& [v, w] : graph[u]) {
            if (v == p) {
                continue;
            }

            dfs(v, u, d + w);
        }
    }
};

struct PathDFS {
    int n;
    vector<int> path;
    vector<char> on_path;
    vector<vector<int>> path_subs;
    vector<vector<pair<int, long>>> graph;

    PathDFS(int u0, int u1, int n, const vector<tuple<int, int, long>>& edges)
        : n(n), on_path(n), graph(edges_to_adj(n, edges)) {
        pdfs(u0, -1, u1);

        for (auto& a : path) {
            on_path[a] = true;
        }

        for (auto& a : path) {
            path_subs.emplace_back();
            dfs(a, -1, path_subs.back());
        }
    }

    vector<int> st;

    void pdfs(int u, int p, int targ) {
        st.push_back(u);

        if (u == targ) {
            path = st;
        }

        for (auto& [v, _w] : graph[u]) {
            if (v == p) {
                continue;
            }

            pdfs(v, u, targ);
        }

        st.pop_back();
    }

    void dfs(int u, int p, vector<int>& out) {
        out.push_back(u);

        for (auto& [v, _w] : graph[u]) {
            if (v == p || on_path[v]) {
                continue;
            }

            dfs(v, u, out);
        }
    }
};

struct MArr {
    vector<long> vals;
    vector<int> comp;

    MArr(const vector<long>& vals) : vals(vals), comp(sz(vals)) {
        vector<pair<long, int>> v;
        for (int i = 0; i < sz(vals); i++) {
            v.emplace_back(vals[i], i);
        }
        sort(begin(v), end(v));

        for (int i = 0; i < sz(v); i++) {
            comp[v[i].second] = i;
        }
    }
};

struct Node {
    long sum, last0, last1;
    int cnt;

    Node operator+(const Node& n) const {
        if (n.last1 == -1) {
            return {sum + n.sum, last0, last1, cnt + n.cnt};
        } else if (n.last0 == -1) {
            return {sum + n.sum, last1, n.last1, cnt + n.cnt};
        } else {
            return {sum + n.sum, n.last0, n.last1, cnt + n.cnt};
        }
    }

    static Node c_from(long x) {
        return {x, -1, x, 1};
    }

    static Node c_def() {
        return {0, -1, -1, 0};
    }
};

struct ST {
    int n;
    vector<Node> v;

    ST(int n) : n(n), v(4 * n, Node::c_def()) {}

    void update(int o, int l, int r, int ind, const Node& x) {
        if (l == r) {
            v[o] = x;
            return;
        }

        int mid = (l + r) / 2, lc = o * 2, rc = lc + 1;
        if (ind <= mid) {
            update(lc, l, mid, ind, x);
        } else {
            update(rc, mid + 1, r, ind, x);
        }

        v[o] = v[lc] + v[rc];
    }

    void update(int ind, const Node& x) {
        update(1, 0, n - 1, ind, x);
    }

    Node query(int o, int l, int r, int ql, int qr) const {
        if (ql <= l && r <= qr) {
            return v[o];
        }

        int mid = (l + r) / 2, lc = o * 2, rc = lc + 1;
        if (ql <= mid) {
            if (mid < qr) {
                return query(lc, l, mid, ql, qr) +
                       query(rc, mid + 1, r, ql, qr);
            }
            return query(lc, l, mid, ql, qr);
        }
        return query(rc, mid + 1, r, ql, qr);
    }

    Node query(int l, int r) const {
        if (l > r) {
            return Node::c_def();
        }
        return query(1, 0, n - 1, l, r);
    }

    Node query_all() const {
        return v[1];
    }

    template <typename Cb>
    pair<int, Node> bsearch(int o, int l, int r, const Node& pref, const Cb& cb)
        const {
        if (l == r) {
            return {l - 1, pref};
        }

        int mid = (l + r) / 2, lc = o * 2, rc = lc + 1;
        if (!cb(pref + v[lc])) {
            return bsearch(lc, l, mid, pref, cb);
        } else {
            return bsearch(rc, mid + 1, r, pref + v[lc], cb);
        }
    }

    template <typename Cb>
    pair<int, Node> bsearch(const Cb& cb) const {
        if (cb(v[1])) {
            return {n, v[1]};
        }
        return bsearch(1, 0, n - 1, Node::c_def(), cb);
    }
};

struct DS {
    MArr arr[2];
    ST v_st[2];
    set<int> v_inds[2];

    DS(const vector<long>& v0, const vector<long>& v1)
        : arr {v0, v1}, v_st {sz(v0), sz(v1)} {}

    void insert(int ind, int x) {
        dbg("+", ind, arr[ind].vals[x]);
        v_inds[ind].insert(arr[ind].comp[x]);
        v_st[ind].update(arr[ind].comp[x], Node::c_from(arr[ind].vals[x]));
    }

    void erase(int ind, int x) {
        dbg("-", ind, arr[ind].vals[x]);
        v_inds[ind].insert(arr[ind].comp[x]);
        v_st[ind].update(arr[ind].comp[x], Node::c_def());
    }

    int query(long kv) {
        int ans = -1e9;

        auto upd_ans = [&](int ind) -> void {
            ind = clamp(ind, -1, v_st[0].n);

            auto q0 = v_st[0].query(0, ind),
                 q1 = v_st[1]
                          .bsearch([&](const Node& o) -> bool {
                              return q0.sum + o.sum <= kv;
                          })
                          .second;

            if (q0.sum + q1.sum <= kv) {
                ans = max(ans, q0.cnt * 2 + q1.cnt);
            }
        };

        int l = -1, r = v_st[0].n;
        while (r - l > 1) {
            int mid = (l + r) / 2;

            auto q0 = v_st[0].query(0, mid),
                 q1 = v_st[1]
                          .bsearch([&](const Node& o) -> bool {
                              return q0.sum + o.sum <= kv;
                          })
                          .second;

            if (q0.sum + q1.sum <= kv &&
                ((q1.last0 == -1 && q1.last1 * 2 > q0.last1) ||
                 (q1.last0 != -1 && q1.last0 + q1.last1 > q0.last1))) {
                l = mid;
            } else {
                r = mid;
            }
        }

        auto upd_ans2 = [&](int ind) -> void {
            upd_ans(ind - 1);
            upd_ans(ind);
            upd_ans(ind + 1);
        };

        upd_ans2(l);
        upd_ans2(0);
        upd_ans2(
            v_st[0]
                .bsearch([&](const Node& o) -> bool { return o.sum <= kv; })
                .first);
        upd_ans2(v_st[0]
                     .bsearch([&](const Node& o) -> bool {
                         return o.sum <= kv - v_st[1].query_all().sum;
                     })
                     .first);

        auto upd_rep = [&](auto cb) -> void {
            int u = l;

            for (int it = 0; it < 2; it++) {
                auto n_u = cb(u);
                if (!n_u) {
                    return;
                }

                u = n_u.value();
                upd_ans(u);
            }
        };

        upd_rep([&](int u) -> optional<int> {
            auto it = v_inds[0].lower_bound(u);
            if (it == v_inds[0].begin()) {
                return {};
            }
            return *(--it);
        });
        upd_rep([&](int u) -> optional<int> {
            auto it = v_inds[0].upper_bound(u);
            if (it == v_inds[0].end()) {
                return {};
            }
            return *it;
        });

        return ans;
    }
};

int solve_disjoint(long kv,
                   const vector<long>& dist0,
                   const vector<long>& dist1) {
    vector<long> dists;
    dists.insert(dists.end(), begin(dist0), end(dist0));
    dists.insert(dists.end(), begin(dist1), end(dist1));

    sort(begin(dists), end(dists));

    long sum = 0;
    int i;
    for (i = 0; i < sz(dists); i++) {
        sum += dists[i];
        if (sum > kv) {
            break;
        }
    }

    return i;
}

int solve(int n, int u0, int u1, long kv, vector<tuple<int, int, long>> edges) {
    auto dist0 = DistDFS(u0, n, edges).dist, dist1 = DistDFS(u1, n, edges).dist;
    auto path_dfs = PathDFS(u0, u1, n, edges);
    auto path = path_dfs.path_subs;
    int m = sz(path);

    vector<long> cost1(n), cost2(n), delta(n);

    for (int i = 0; i < n; i++) {
        cost1[i] = min(dist0[i], dist1[i]);
        cost2[i] = max(dist0[i], dist1[i]);
        delta[i] = cost2[i] - cost1[i];
    }

    map<long, vector<int>> mp;

    for (int i = 0; i < m; i++) {
        mp[delta[path[i][0]]].push_back(i);
    }

    DS ds(cost2, cost1);

    int ans = solve_disjoint(kv, dist0, dist1);
    dbg(ans);

    int ans_add = 0;
    long min_cost = 0;
    for (auto& a : path_dfs.path) {
        ans_add++;
        min_cost += cost1[a];
    }

    auto move_vals = [&](vector<int> nodes, bool undo) -> void {
        sort(begin(nodes), end(nodes),
             Cmp([&](int u) -> long { return cost1[u]; }));

        for (auto& u : nodes) {
            if (path_dfs.on_path[u]) {
                ans_add++;
                min_cost += delta[u];
            } else {
                ds.erase(1, u);
                ds.insert(0, u);
            }

            ans = max(ans, ans_add + ds.query(kv - min_cost));
            dbg(ans, ans_add, min_cost);
        }

        if (!undo) {
            return;
        }

        for (auto& u : nodes) {
            if (path_dfs.on_path[u]) {
                ans_add--;
                min_cost -= delta[u];
            } else {
                ds.insert(1, u);
                ds.erase(0, u);
            }
        }
    };

    for (int i = 0; i < n; i++) {
        if (path_dfs.on_path[i]) {
            continue;
        }
        ds.insert(1, i);
    }

    for (auto& [_k, vals] : mp) {
        dbg(vals);
        if (sz(vals) == 1) {
            move_vals(path[vals[0]], false);
            continue;
        }

        assert(sz(vals) == 2);
        dbg(ans_add, min_cost);
        move_vals(path[vals[0]], true);
        dbg(ans_add, min_cost);
        move_vals(path[vals[1]], false);
        move_vals(path[vals[0]], false);
    }

    return ans;
}

int max_score(int n,
              int u0,
              int u1,
              ll kv,
              vector<int> edges_u,
              vector<int> edges_v,
              vector<int> edges_w) {
    {
        DS ds {{6}, {5}};
        ds.insert(1, 0);
        ds.erase(1, 0);
        ds.insert(0, 0);
        ds.insert(1, 0);
        ds.erase(0, 0);
        ds.erase(1, 0);
        ds.insert(0, 0);
        dbg(ds.query(6));
        // return -1;
    }
    vector<tuple<int, int, long>> edges;

    for (int i = 0; i < n - 1; i++) {
        edges.emplace_back(edges_u[i], edges_v[i], edges_w[i]);
    }

    return solve(n, u0, u1, kv, edges);
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 996 ms 119708 KB Output is correct
2 Correct 898 ms 136588 KB Output is correct
3 Correct 448 ms 3572 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 344 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 344 KB Output is correct
10 Correct 0 ms 344 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 344 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 344 KB Output is correct
10 Correct 0 ms 344 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 1 ms 344 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 344 KB Output is correct
15 Correct 1 ms 344 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 1 ms 344 KB Output is correct
18 Correct 2 ms 544 KB Output is correct
19 Correct 3 ms 600 KB Output is correct
20 Correct 2 ms 600 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 2 ms 600 KB Output is correct
24 Correct 2 ms 600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 344 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 344 KB Output is correct
10 Correct 0 ms 344 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 1 ms 344 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 344 KB Output is correct
15 Correct 1 ms 344 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 1 ms 344 KB Output is correct
18 Correct 2 ms 544 KB Output is correct
19 Correct 3 ms 600 KB Output is correct
20 Correct 2 ms 600 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 2 ms 600 KB Output is correct
24 Correct 2 ms 600 KB Output is correct
25 Correct 8 ms 344 KB Output is correct
26 Correct 17 ms 2004 KB Output is correct
27 Correct 14 ms 2296 KB Output is correct
28 Correct 6 ms 2296 KB Output is correct
29 Correct 7 ms 2272 KB Output is correct
30 Correct 11 ms 2080 KB Output is correct
31 Correct 8 ms 2516 KB Output is correct
32 Correct 7 ms 2516 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 0 ms 344 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 0 ms 344 KB Output is correct
10 Correct 0 ms 344 KB Output is correct
11 Correct 1 ms 344 KB Output is correct
12 Correct 1 ms 496 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 0 ms 344 KB Output is correct
15 Correct 1 ms 344 KB Output is correct
16 Correct 0 ms 344 KB Output is correct
17 Correct 1 ms 344 KB Output is correct
18 Correct 1 ms 344 KB Output is correct
19 Correct 1 ms 344 KB Output is correct
20 Correct 0 ms 344 KB Output is correct
21 Correct 0 ms 344 KB Output is correct
22 Correct 1 ms 344 KB Output is correct
23 Correct 1 ms 344 KB Output is correct
24 Correct 0 ms 500 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 344 KB Output is correct
11 Correct 0 ms 344 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 344 KB Output is correct
15 Correct 1 ms 344 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 1 ms 344 KB Output is correct
18 Correct 1 ms 344 KB Output is correct
19 Correct 0 ms 344 KB Output is correct
20 Correct 1 ms 344 KB Output is correct
21 Correct 0 ms 344 KB Output is correct
22 Correct 0 ms 344 KB Output is correct
23 Correct 1 ms 344 KB Output is correct
24 Correct 1 ms 496 KB Output is correct
25 Correct 1 ms 348 KB Output is correct
26 Correct 0 ms 344 KB Output is correct
27 Correct 1 ms 344 KB Output is correct
28 Correct 0 ms 344 KB Output is correct
29 Correct 1 ms 344 KB Output is correct
30 Correct 1 ms 344 KB Output is correct
31 Correct 1 ms 344 KB Output is correct
32 Correct 0 ms 344 KB Output is correct
33 Correct 0 ms 344 KB Output is correct
34 Correct 1 ms 344 KB Output is correct
35 Correct 1 ms 344 KB Output is correct
36 Correct 0 ms 500 KB Output is correct
37 Correct 1 ms 344 KB Output is correct
38 Correct 1 ms 344 KB Output is correct
39 Correct 1 ms 348 KB Output is correct
40 Correct 1 ms 344 KB Output is correct
41 Correct 1 ms 344 KB Output is correct
42 Correct 1 ms 344 KB Output is correct
43 Correct 1 ms 348 KB Output is correct
44 Correct 1 ms 504 KB Output is correct
45 Correct 1 ms 600 KB Output is correct
46 Correct 1 ms 348 KB Output is correct
47 Correct 1 ms 344 KB Output is correct
48 Correct 1 ms 344 KB Output is correct
49 Correct 1 ms 344 KB Output is correct
50 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 344 KB Output is correct
11 Correct 0 ms 344 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 344 KB Output is correct
15 Correct 1 ms 344 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 1 ms 344 KB Output is correct
18 Correct 1 ms 344 KB Output is correct
19 Correct 2 ms 544 KB Output is correct
20 Correct 3 ms 600 KB Output is correct
21 Correct 2 ms 600 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 2 ms 600 KB Output is correct
25 Correct 2 ms 600 KB Output is correct
26 Correct 0 ms 344 KB Output is correct
27 Correct 1 ms 344 KB Output is correct
28 Correct 0 ms 344 KB Output is correct
29 Correct 0 ms 344 KB Output is correct
30 Correct 1 ms 344 KB Output is correct
31 Correct 1 ms 496 KB Output is correct
32 Correct 1 ms 348 KB Output is correct
33 Correct 0 ms 344 KB Output is correct
34 Correct 1 ms 344 KB Output is correct
35 Correct 0 ms 344 KB Output is correct
36 Correct 1 ms 344 KB Output is correct
37 Correct 1 ms 344 KB Output is correct
38 Correct 1 ms 344 KB Output is correct
39 Correct 0 ms 344 KB Output is correct
40 Correct 0 ms 344 KB Output is correct
41 Correct 1 ms 344 KB Output is correct
42 Correct 1 ms 344 KB Output is correct
43 Correct 0 ms 500 KB Output is correct
44 Correct 1 ms 344 KB Output is correct
45 Correct 1 ms 344 KB Output is correct
46 Correct 1 ms 348 KB Output is correct
47 Correct 1 ms 344 KB Output is correct
48 Correct 1 ms 344 KB Output is correct
49 Correct 1 ms 344 KB Output is correct
50 Correct 1 ms 348 KB Output is correct
51 Correct 1 ms 504 KB Output is correct
52 Correct 1 ms 600 KB Output is correct
53 Correct 1 ms 348 KB Output is correct
54 Correct 1 ms 344 KB Output is correct
55 Correct 1 ms 344 KB Output is correct
56 Correct 1 ms 344 KB Output is correct
57 Correct 1 ms 348 KB Output is correct
58 Correct 2 ms 344 KB Output is correct
59 Correct 2 ms 344 KB Output is correct
60 Correct 2 ms 344 KB Output is correct
61 Correct 2 ms 344 KB Output is correct
62 Correct 1 ms 344 KB Output is correct
63 Correct 3 ms 600 KB Output is correct
64 Correct 1 ms 600 KB Output is correct
65 Correct 2 ms 856 KB Output is correct
66 Correct 4 ms 600 KB Output is correct
67 Correct 2 ms 604 KB Output is correct
68 Correct 1 ms 600 KB Output is correct
69 Correct 2 ms 604 KB Output is correct
70 Correct 2 ms 600 KB Output is correct
71 Correct 1 ms 600 KB Output is correct
72 Correct 2 ms 600 KB Output is correct
73 Correct 2 ms 600 KB Output is correct
74 Correct 2 ms 600 KB Output is correct
75 Correct 2 ms 344 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 344 KB Output is correct
11 Correct 0 ms 344 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 344 KB Output is correct
15 Correct 1 ms 344 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 1 ms 344 KB Output is correct
18 Correct 1 ms 344 KB Output is correct
19 Correct 2 ms 544 KB Output is correct
20 Correct 3 ms 600 KB Output is correct
21 Correct 2 ms 600 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 2 ms 600 KB Output is correct
25 Correct 2 ms 600 KB Output is correct
26 Correct 8 ms 344 KB Output is correct
27 Correct 17 ms 2004 KB Output is correct
28 Correct 14 ms 2296 KB Output is correct
29 Correct 6 ms 2296 KB Output is correct
30 Correct 7 ms 2272 KB Output is correct
31 Correct 11 ms 2080 KB Output is correct
32 Correct 8 ms 2516 KB Output is correct
33 Correct 7 ms 2516 KB Output is correct
34 Correct 0 ms 344 KB Output is correct
35 Correct 1 ms 344 KB Output is correct
36 Correct 0 ms 344 KB Output is correct
37 Correct 0 ms 344 KB Output is correct
38 Correct 1 ms 344 KB Output is correct
39 Correct 1 ms 496 KB Output is correct
40 Correct 1 ms 348 KB Output is correct
41 Correct 0 ms 344 KB Output is correct
42 Correct 1 ms 344 KB Output is correct
43 Correct 0 ms 344 KB Output is correct
44 Correct 1 ms 344 KB Output is correct
45 Correct 1 ms 344 KB Output is correct
46 Correct 1 ms 344 KB Output is correct
47 Correct 0 ms 344 KB Output is correct
48 Correct 0 ms 344 KB Output is correct
49 Correct 1 ms 344 KB Output is correct
50 Correct 1 ms 344 KB Output is correct
51 Correct 0 ms 500 KB Output is correct
52 Correct 1 ms 344 KB Output is correct
53 Correct 1 ms 344 KB Output is correct
54 Correct 1 ms 348 KB Output is correct
55 Correct 1 ms 344 KB Output is correct
56 Correct 1 ms 344 KB Output is correct
57 Correct 1 ms 344 KB Output is correct
58 Correct 1 ms 348 KB Output is correct
59 Correct 1 ms 504 KB Output is correct
60 Correct 1 ms 600 KB Output is correct
61 Correct 1 ms 348 KB Output is correct
62 Correct 1 ms 344 KB Output is correct
63 Correct 1 ms 344 KB Output is correct
64 Correct 1 ms 344 KB Output is correct
65 Correct 1 ms 348 KB Output is correct
66 Correct 2 ms 344 KB Output is correct
67 Correct 2 ms 344 KB Output is correct
68 Correct 2 ms 344 KB Output is correct
69 Correct 2 ms 344 KB Output is correct
70 Correct 1 ms 344 KB Output is correct
71 Correct 3 ms 600 KB Output is correct
72 Correct 1 ms 600 KB Output is correct
73 Correct 2 ms 856 KB Output is correct
74 Correct 4 ms 600 KB Output is correct
75 Correct 2 ms 604 KB Output is correct
76 Correct 1 ms 600 KB Output is correct
77 Correct 2 ms 604 KB Output is correct
78 Correct 2 ms 600 KB Output is correct
79 Correct 1 ms 600 KB Output is correct
80 Correct 2 ms 600 KB Output is correct
81 Correct 2 ms 600 KB Output is correct
82 Correct 2 ms 600 KB Output is correct
83 Correct 2 ms 344 KB Output is correct
84 Correct 8 ms 344 KB Output is correct
85 Correct 10 ms 600 KB Output is correct
86 Correct 9 ms 344 KB Output is correct
87 Correct 8 ms 344 KB Output is correct
88 Correct 10 ms 344 KB Output is correct
89 Correct 13 ms 1880 KB Output is correct
90 Correct 11 ms 1884 KB Output is correct
91 Correct 12 ms 2092 KB Output is correct
92 Correct 11 ms 1880 KB Output is correct
93 Correct 11 ms 1880 KB Output is correct
94 Correct 10 ms 2136 KB Output is correct
95 Correct 15 ms 2136 KB Output is correct
96 Correct 8 ms 2140 KB Output is correct
97 Correct 8 ms 2136 KB Output is correct
98 Correct 12 ms 1880 KB Output is correct
99 Correct 8 ms 1880 KB Output is correct
100 Correct 17 ms 1368 KB Output is correct
101 Correct 10 ms 600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 344 KB Output is correct
11 Correct 0 ms 344 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 344 KB Output is correct
15 Correct 1 ms 344 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 1 ms 344 KB Output is correct
18 Correct 1 ms 344 KB Output is correct
19 Correct 2 ms 544 KB Output is correct
20 Correct 3 ms 600 KB Output is correct
21 Correct 2 ms 600 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 2 ms 600 KB Output is correct
25 Correct 2 ms 600 KB Output is correct
26 Correct 8 ms 344 KB Output is correct
27 Correct 17 ms 2004 KB Output is correct
28 Correct 14 ms 2296 KB Output is correct
29 Correct 6 ms 2296 KB Output is correct
30 Correct 7 ms 2272 KB Output is correct
31 Correct 11 ms 2080 KB Output is correct
32 Correct 8 ms 2516 KB Output is correct
33 Correct 7 ms 2516 KB Output is correct
34 Correct 0 ms 344 KB Output is correct
35 Correct 1 ms 344 KB Output is correct
36 Correct 0 ms 344 KB Output is correct
37 Correct 0 ms 344 KB Output is correct
38 Correct 1 ms 344 KB Output is correct
39 Correct 1 ms 496 KB Output is correct
40 Correct 1 ms 348 KB Output is correct
41 Correct 0 ms 344 KB Output is correct
42 Correct 1 ms 344 KB Output is correct
43 Correct 0 ms 344 KB Output is correct
44 Correct 1 ms 344 KB Output is correct
45 Correct 1 ms 344 KB Output is correct
46 Correct 1 ms 344 KB Output is correct
47 Correct 0 ms 344 KB Output is correct
48 Correct 0 ms 344 KB Output is correct
49 Correct 1 ms 344 KB Output is correct
50 Correct 1 ms 344 KB Output is correct
51 Correct 0 ms 500 KB Output is correct
52 Correct 1 ms 344 KB Output is correct
53 Correct 1 ms 344 KB Output is correct
54 Correct 1 ms 348 KB Output is correct
55 Correct 1 ms 344 KB Output is correct
56 Correct 1 ms 344 KB Output is correct
57 Correct 1 ms 344 KB Output is correct
58 Correct 1 ms 348 KB Output is correct
59 Correct 1 ms 504 KB Output is correct
60 Correct 1 ms 600 KB Output is correct
61 Correct 1 ms 348 KB Output is correct
62 Correct 1 ms 344 KB Output is correct
63 Correct 1 ms 344 KB Output is correct
64 Correct 1 ms 344 KB Output is correct
65 Correct 1 ms 348 KB Output is correct
66 Correct 2 ms 344 KB Output is correct
67 Correct 2 ms 344 KB Output is correct
68 Correct 2 ms 344 KB Output is correct
69 Correct 2 ms 344 KB Output is correct
70 Correct 1 ms 344 KB Output is correct
71 Correct 3 ms 600 KB Output is correct
72 Correct 1 ms 600 KB Output is correct
73 Correct 2 ms 856 KB Output is correct
74 Correct 4 ms 600 KB Output is correct
75 Correct 2 ms 604 KB Output is correct
76 Correct 1 ms 600 KB Output is correct
77 Correct 2 ms 604 KB Output is correct
78 Correct 2 ms 600 KB Output is correct
79 Correct 1 ms 600 KB Output is correct
80 Correct 2 ms 600 KB Output is correct
81 Correct 2 ms 600 KB Output is correct
82 Correct 2 ms 600 KB Output is correct
83 Correct 2 ms 344 KB Output is correct
84 Correct 8 ms 344 KB Output is correct
85 Correct 10 ms 600 KB Output is correct
86 Correct 9 ms 344 KB Output is correct
87 Correct 8 ms 344 KB Output is correct
88 Correct 10 ms 344 KB Output is correct
89 Correct 13 ms 1880 KB Output is correct
90 Correct 11 ms 1884 KB Output is correct
91 Correct 12 ms 2092 KB Output is correct
92 Correct 11 ms 1880 KB Output is correct
93 Correct 11 ms 1880 KB Output is correct
94 Correct 10 ms 2136 KB Output is correct
95 Correct 15 ms 2136 KB Output is correct
96 Correct 8 ms 2140 KB Output is correct
97 Correct 8 ms 2136 KB Output is correct
98 Correct 12 ms 1880 KB Output is correct
99 Correct 8 ms 1880 KB Output is correct
100 Correct 17 ms 1368 KB Output is correct
101 Correct 10 ms 600 KB Output is correct
102 Correct 577 ms 3176 KB Output is correct
103 Correct 571 ms 3036 KB Output is correct
104 Correct 883 ms 125540 KB Output is correct
105 Correct 870 ms 8220 KB Output is correct
106 Correct 909 ms 5920 KB Output is correct
107 Execution timed out 1064 ms 100204 KB Time limit exceeded
108 Halted 0 ms 0 KB -