Submission #849605

# Submission time Handle Problem Language Result Execution time Memory
849605 2023-09-15T05:12:31 Z skittles1412 Closing Time (IOI23_closing) C++17
83 / 100
1000 ms 135068 KB
#include "bits/extc++.h"

using namespace std;

template <typename T, typename... U>
void dbgh(const T& t, const U&... u) {
    cerr << t;
    ((cerr << " | " << u), ...);
    cerr << endl;
}

#ifdef DEBUG
#define dbg(...)                                           \
    cerr << "L" << __LINE__ << " [" << #__VA_ARGS__ << "]" \
         << ": ";                                          \
    dbgh(__VA_ARGS__)
#else
#define cerr   \
    if (false) \
    cerr
#define dbg(...)
#endif

using ll = long long;

#define endl "\n"
#define long int64_t
#define sz(x) int(std::size(x))

template <typename T>
ostream& operator<<(ostream& out, const vector<T>& arr) {
    out << "[";
    for (int i = 0; i < sz(arr); i++) {
        if (i) {
            out << ", ";
        }
        out << arr[i];
    }
    return out << "]";
}

template <typename Cb>
struct Cmp {
    Cb cb;

    Cmp(Cb cb) : cb(cb) {}

    template <typename T>
    bool operator()(const T& a, const T& b) const {
        return cb(a) < cb(b);
    }
};

vector<vector<pair<int, long>>> edges_to_adj(
    int n,
    const vector<tuple<int, int, long>>& edges) {
    vector<vector<pair<int, long>>> graph(n);

    for (auto& [u, v, w] : edges) {
        graph[u].emplace_back(v, w);
        graph[v].emplace_back(u, w);
    }

    return graph;
}

struct DistDFS {
    vector<long> dist;
    vector<vector<pair<int, long>>> graph;

    DistDFS(int root, int n, const vector<tuple<int, int, long>>& edges)
        : dist(n), graph(edges_to_adj(n, edges)) {
        dfs(root, -1, 0);
    }

    void dfs(int u, int p, long d) {
        dist[u] = d;

        for (auto& [v, w] : graph[u]) {
            if (v == p) {
                continue;
            }

            dfs(v, u, d + w);
        }
    }
};

struct PathDFS {
    int n;
    vector<int> path;
    vector<char> on_path;
    vector<vector<int>> path_subs;
    vector<vector<pair<int, long>>> graph;

    PathDFS(int u0, int u1, int n, const vector<tuple<int, int, long>>& edges)
        : n(n), on_path(n), graph(edges_to_adj(n, edges)) {
        pdfs(u0, -1, u1);

        for (auto& a : path) {
            on_path[a] = true;
        }

        for (auto& a : path) {
            path_subs.emplace_back();
            dfs(a, -1, path_subs.back());
        }
    }

    vector<int> st;

    void pdfs(int u, int p, int targ) {
        st.push_back(u);

        if (u == targ) {
            path = st;
        }

        for (auto& [v, _w] : graph[u]) {
            if (v == p) {
                continue;
            }

            pdfs(v, u, targ);
        }

        st.pop_back();
    }

    void dfs(int u, int p, vector<int>& out) {
        out.push_back(u);

        for (auto& [v, _w] : graph[u]) {
            if (v == p || on_path[v]) {
                continue;
            }

            dfs(v, u, out);
        }
    }
};

struct MArr {
    vector<long> vals;
    vector<int> comp;

    MArr(const vector<long>& vals) : vals(vals), comp(sz(vals)) {
        vector<pair<long, int>> v;
        for (int i = 0; i < sz(vals); i++) {
            v.emplace_back(vals[i], i);
        }
        sort(begin(v), end(v));

        for (int i = 0; i < sz(v); i++) {
            comp[v[i].second] = i;
        }
    }
};

struct Node {
    long sum, last0, last1;
    int cnt;

    Node operator+(const Node& n) const {
        if (n.last1 == -1) {
            return {sum + n.sum, last0, last1, cnt + n.cnt};
        } else if (n.last0 == -1) {
            return {sum + n.sum, last1, n.last1, cnt + n.cnt};
        } else {
            return {sum + n.sum, n.last0, n.last1, cnt + n.cnt};
        }
    }

    static Node c_from(long x) {
        return {x, -1, x, 1};
    }

    static Node c_def() {
        return {0, -1, -1, 0};
    }
};

struct ST {
    int n;
    vector<Node> v;

    ST(int n) : n(n), v(4 * n, Node::c_def()) {}

    void update(int o, int l, int r, int ind, const Node& x) {
        if (l == r) {
            v[o] = x;
            return;
        }

        int mid = (l + r) / 2, lc = o * 2, rc = lc + 1;
        if (ind <= mid) {
            update(lc, l, mid, ind, x);
        } else {
            update(rc, mid + 1, r, ind, x);
        }

        v[o] = v[lc] + v[rc];
    }

    void update(int ind, const Node& x) {
        update(1, 0, n - 1, ind, x);
    }

    Node query(int o, int l, int r, int ql, int qr) const {
        if (ql <= l && r <= qr) {
            return v[o];
        }

        int mid = (l + r) / 2, lc = o * 2, rc = lc + 1;
        if (ql <= mid) {
            if (mid < qr) {
                return query(lc, l, mid, ql, qr) +
                       query(rc, mid + 1, r, ql, qr);
            }
            return query(lc, l, mid, ql, qr);
        }
        return query(rc, mid + 1, r, ql, qr);
    }

    Node query(int l, int r) const {
        if (l > r) {
            return Node::c_def();
        }
        return query(1, 0, n - 1, l, r);
    }

    Node query_all() const {
        return v[1];
    }

    template <typename Cb>
    pair<int, Node> bsearch(int o, int l, int r, const Node& pref, const Cb& cb)
        const {
        if (l == r) {
            return {l - 1, pref};
        }

        int mid = (l + r) / 2, lc = o * 2, rc = lc + 1;
        if (!cb(pref + v[lc])) {
            return bsearch(lc, l, mid, pref, cb);
        } else {
            return bsearch(rc, mid + 1, r, pref + v[lc], cb);
        }
    }

    template <typename Cb>
    pair<int, Node> bsearch(const Cb& cb) const {
        if (cb(v[1])) {
            return {n, v[1]};
        }
        return bsearch(1, 0, n - 1, Node::c_def(), cb);
    }
};

struct DS {
    MArr arr[2];
    ST v_st[2];
    set<int> v_inds[2];

    DS(const vector<long>& v0, const vector<long>& v1)
        : arr {v0, v1}, v_st {sz(v0), sz(v1)} {}

    void insert(int ind, int x) {
        dbg("+", ind, arr[ind].vals[x]);
        v_inds[ind].insert(arr[ind].comp[x]);
        v_st[ind].update(arr[ind].comp[x], Node::c_from(arr[ind].vals[x]));
    }

    void erase(int ind, int x) {
        dbg("-", ind, arr[ind].vals[x]);
        v_inds[ind].insert(arr[ind].comp[x]);
        v_st[ind].update(arr[ind].comp[x], Node::c_def());
    }

    int query(long kv) {
        int ans = -1e9;

        auto upd_ans = [&](int ind) -> void {
            ind = clamp(ind, -1, v_st[0].n);

            auto q0 = v_st[0].query(0, ind),
                 q1 = v_st[1]
                          .bsearch([&](const Node& o) -> bool {
                              return q0.sum + o.sum <= kv;
                          })
                          .second;

            if (q0.sum + q1.sum <= kv) {
                ans = max(ans, q0.cnt * 2 + q1.cnt);
            }
        };

        int l = -1, r = v_st[0].n;
        while (r - l > 1) {
            int mid = (l + r) / 2;

            auto q0 = v_st[0].query(0, mid),
                 q1 = v_st[1]
                          .bsearch([&](const Node& o) -> bool {
                              return q0.sum + o.sum <= kv;
                          })
                          .second;

            if (q0.sum + q1.sum <= kv &&
                ((q1.last0 == -1 && q1.last1 * 2 > q0.last1) ||
                 (q1.last0 != -1 && q1.last0 + q1.last1 > q0.last1))) {
                l = mid;
            } else {
                r = mid;
            }
        }

        auto upd_ans2 = [&](int ind) -> void {
            upd_ans(ind - 1);
            upd_ans(ind);
            upd_ans(ind + 1);
        };

        upd_ans2(l);
        upd_ans2(0);
        upd_ans2(
            v_st[0]
                .bsearch([&](const Node& o) -> bool { return o.sum <= kv; })
                .first);
        upd_ans2(v_st[0]
                     .bsearch([&](const Node& o) -> bool {
                         return o.sum <= kv - v_st[1].query_all().sum;
                     })
                     .first);

        auto upd_rep = [&](auto cb) -> void {
            int u = l;

            for (int it = 0; it < 2; it++) {
                auto n_u = cb(u);
                if (!n_u) {
                    return;
                }

                u = n_u.value();
                upd_ans(u);
            }
        };

        upd_rep([&](int u) -> optional<int> {
            auto it = v_inds[0].lower_bound(u);
            if (it == v_inds[0].begin()) {
                return {};
            }
            return *(--it);
        });
        upd_rep([&](int u) -> optional<int> {
            auto it = v_inds[0].upper_bound(u);
            if (it == v_inds[0].end()) {
                return {};
            }
            return *it;
        });

        return ans;
    }
};

int solve_disjoint(long kv,
                   const vector<long>& dist0,
                   const vector<long>& dist1) {
    vector<long> dists;
    dists.insert(dists.end(), begin(dist0), end(dist0));
    dists.insert(dists.end(), begin(dist1), end(dist1));

    sort(begin(dists), end(dists));

    long sum = 0;
    int i;
    for (i = 0; i < sz(dists); i++) {
        sum += dists[i];
        if (sum > kv) {
            break;
        }
    }

    return i;
}

int solve(int n, int u0, int u1, long kv, vector<tuple<int, int, long>> edges) {
    auto dist0 = DistDFS(u0, n, edges).dist, dist1 = DistDFS(u1, n, edges).dist;
    auto path_dfs = PathDFS(u0, u1, n, edges);
    auto path = path_dfs.path_subs;
    int m = sz(path);

    vector<long> cost1(n), cost2(n), delta(n);

    for (int i = 0; i < n; i++) {
        cost1[i] = min(dist0[i], dist1[i]);
        cost2[i] = max(dist0[i], dist1[i]);
        delta[i] = cost2[i] - cost1[i];
    }

    map<long, vector<int>> mp;

    for (int i = 0; i < m; i++) {
        mp[delta[path[i][0]]].push_back(i);
    }

    DS ds(cost2, cost1);

    int ans = solve_disjoint(kv, dist0, dist1);
    dbg(ans);

    int ans_add = 0;
    long min_cost = 0;
    for (auto& a : path_dfs.path) {
        ans_add++;
        min_cost += cost1[a];
    }

    auto move_vals = [&](vector<int> nodes, bool undo) -> void {
        sort(begin(nodes), end(nodes),
             Cmp([&](int u) -> long { return cost1[u]; }));

        for (auto& u : nodes) {
            if (path_dfs.on_path[u]) {
                ans_add++;
                min_cost += delta[u];
            } else {
                ds.erase(1, u);
                ds.insert(0, u);
            }

            ans = max(ans, ans_add + ds.query(kv - min_cost));
            dbg(ans, ans_add, min_cost);
        }

        if (!undo) {
            return;
        }

        for (auto& u : nodes) {
            if (path_dfs.on_path[u]) {
                ans_add--;
                min_cost -= delta[u];
            } else {
                ds.insert(1, u);
                ds.erase(0, u);
            }
        }
    };

    for (int i = 0; i < n; i++) {
        if (path_dfs.on_path[i]) {
            continue;
        }
        ds.insert(1, i);
    }

    for (auto& [_k, vals] : mp) {
        dbg(vals);
        if (sz(vals) == 1) {
            move_vals(path[vals[0]], false);
            continue;
        }

        assert(sz(vals) == 2);
        dbg(ans_add, min_cost);
        move_vals(path[vals[0]], true);
        dbg(ans_add, min_cost);
        move_vals(path[vals[1]], false);
        move_vals(path[vals[0]], false);
    }

    return ans;
}

int max_score(int n,
              int u0,
              int u1,
              ll kv,
              vector<int> edges_u,
              vector<int> edges_v,
              vector<int> edges_w) {
    {
        DS ds {{6}, {5}};
        ds.insert(1, 0);
        ds.erase(1, 0);
        ds.insert(0, 0);
        ds.insert(1, 0);
        ds.erase(0, 0);
        ds.erase(1, 0);
        ds.insert(0, 0);
        dbg(ds.query(6));
        // return -1;
    }
    vector<tuple<int, int, long>> edges;

    for (int i = 0; i < n - 1; i++) {
        edges.emplace_back(edges_u[i], edges_v[i], edges_w[i]);
    }

    return solve(n, u0, u1, kv, edges);
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 786 ms 120768 KB Output is correct
2 Correct 765 ms 135068 KB Output is correct
3 Correct 346 ms 3824 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 344 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 1 ms 344 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 344 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 1 ms 344 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 1 ms 344 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 1 ms 344 KB Output is correct
19 Correct 2 ms 604 KB Output is correct
20 Correct 1 ms 604 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 344 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 1 ms 344 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 1 ms 344 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 1 ms 344 KB Output is correct
19 Correct 2 ms 604 KB Output is correct
20 Correct 1 ms 604 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
25 Correct 7 ms 344 KB Output is correct
26 Correct 14 ms 2008 KB Output is correct
27 Correct 11 ms 1788 KB Output is correct
28 Correct 5 ms 2300 KB Output is correct
29 Correct 7 ms 2360 KB Output is correct
30 Correct 8 ms 2048 KB Output is correct
31 Correct 8 ms 2520 KB Output is correct
32 Correct 6 ms 2520 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 1 ms 344 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 1 ms 344 KB Output is correct
21 Correct 0 ms 600 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 1 ms 344 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Correct 0 ms 348 KB Output is correct
26 Correct 0 ms 348 KB Output is correct
27 Correct 0 ms 348 KB Output is correct
28 Correct 0 ms 348 KB Output is correct
29 Correct 1 ms 344 KB Output is correct
30 Correct 0 ms 348 KB Output is correct
31 Correct 0 ms 348 KB Output is correct
32 Correct 1 ms 344 KB Output is correct
33 Correct 0 ms 600 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Correct 1 ms 348 KB Output is correct
37 Correct 1 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Correct 1 ms 348 KB Output is correct
40 Correct 1 ms 348 KB Output is correct
41 Correct 1 ms 348 KB Output is correct
42 Correct 1 ms 348 KB Output is correct
43 Correct 0 ms 348 KB Output is correct
44 Correct 1 ms 344 KB Output is correct
45 Correct 1 ms 348 KB Output is correct
46 Correct 1 ms 348 KB Output is correct
47 Correct 1 ms 344 KB Output is correct
48 Correct 1 ms 344 KB Output is correct
49 Correct 1 ms 348 KB Output is correct
50 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 344 KB Output is correct
20 Correct 2 ms 604 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
25 Correct 1 ms 604 KB Output is correct
26 Correct 0 ms 348 KB Output is correct
27 Correct 1 ms 344 KB Output is correct
28 Correct 0 ms 348 KB Output is correct
29 Correct 0 ms 348 KB Output is correct
30 Correct 0 ms 348 KB Output is correct
31 Correct 1 ms 348 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 0 ms 348 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Correct 1 ms 344 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Correct 1 ms 344 KB Output is correct
40 Correct 0 ms 600 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 0 ms 348 KB Output is correct
43 Correct 1 ms 348 KB Output is correct
44 Correct 1 ms 348 KB Output is correct
45 Correct 0 ms 348 KB Output is correct
46 Correct 1 ms 348 KB Output is correct
47 Correct 1 ms 348 KB Output is correct
48 Correct 1 ms 348 KB Output is correct
49 Correct 1 ms 348 KB Output is correct
50 Correct 0 ms 348 KB Output is correct
51 Correct 1 ms 344 KB Output is correct
52 Correct 1 ms 348 KB Output is correct
53 Correct 1 ms 348 KB Output is correct
54 Correct 1 ms 344 KB Output is correct
55 Correct 1 ms 344 KB Output is correct
56 Correct 1 ms 348 KB Output is correct
57 Correct 1 ms 348 KB Output is correct
58 Correct 1 ms 348 KB Output is correct
59 Correct 2 ms 348 KB Output is correct
60 Correct 1 ms 348 KB Output is correct
61 Correct 1 ms 348 KB Output is correct
62 Correct 1 ms 348 KB Output is correct
63 Correct 2 ms 604 KB Output is correct
64 Correct 2 ms 604 KB Output is correct
65 Correct 2 ms 604 KB Output is correct
66 Correct 4 ms 604 KB Output is correct
67 Correct 2 ms 604 KB Output is correct
68 Correct 1 ms 604 KB Output is correct
69 Correct 2 ms 604 KB Output is correct
70 Correct 1 ms 604 KB Output is correct
71 Correct 2 ms 604 KB Output is correct
72 Correct 2 ms 604 KB Output is correct
73 Correct 2 ms 604 KB Output is correct
74 Correct 3 ms 472 KB Output is correct
75 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 344 KB Output is correct
20 Correct 2 ms 604 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
25 Correct 1 ms 604 KB Output is correct
26 Correct 7 ms 344 KB Output is correct
27 Correct 14 ms 2008 KB Output is correct
28 Correct 11 ms 1788 KB Output is correct
29 Correct 5 ms 2300 KB Output is correct
30 Correct 7 ms 2360 KB Output is correct
31 Correct 8 ms 2048 KB Output is correct
32 Correct 8 ms 2520 KB Output is correct
33 Correct 6 ms 2520 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 1 ms 344 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Correct 1 ms 348 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 0 ms 348 KB Output is correct
43 Correct 0 ms 348 KB Output is correct
44 Correct 1 ms 344 KB Output is correct
45 Correct 0 ms 348 KB Output is correct
46 Correct 0 ms 348 KB Output is correct
47 Correct 1 ms 344 KB Output is correct
48 Correct 0 ms 600 KB Output is correct
49 Correct 0 ms 348 KB Output is correct
50 Correct 0 ms 348 KB Output is correct
51 Correct 1 ms 348 KB Output is correct
52 Correct 1 ms 348 KB Output is correct
53 Correct 0 ms 348 KB Output is correct
54 Correct 1 ms 348 KB Output is correct
55 Correct 1 ms 348 KB Output is correct
56 Correct 1 ms 348 KB Output is correct
57 Correct 1 ms 348 KB Output is correct
58 Correct 0 ms 348 KB Output is correct
59 Correct 1 ms 344 KB Output is correct
60 Correct 1 ms 348 KB Output is correct
61 Correct 1 ms 348 KB Output is correct
62 Correct 1 ms 344 KB Output is correct
63 Correct 1 ms 344 KB Output is correct
64 Correct 1 ms 348 KB Output is correct
65 Correct 1 ms 348 KB Output is correct
66 Correct 1 ms 348 KB Output is correct
67 Correct 2 ms 348 KB Output is correct
68 Correct 1 ms 348 KB Output is correct
69 Correct 1 ms 348 KB Output is correct
70 Correct 1 ms 348 KB Output is correct
71 Correct 2 ms 604 KB Output is correct
72 Correct 2 ms 604 KB Output is correct
73 Correct 2 ms 604 KB Output is correct
74 Correct 4 ms 604 KB Output is correct
75 Correct 2 ms 604 KB Output is correct
76 Correct 1 ms 604 KB Output is correct
77 Correct 2 ms 604 KB Output is correct
78 Correct 1 ms 604 KB Output is correct
79 Correct 2 ms 604 KB Output is correct
80 Correct 2 ms 604 KB Output is correct
81 Correct 2 ms 604 KB Output is correct
82 Correct 3 ms 472 KB Output is correct
83 Correct 1 ms 348 KB Output is correct
84 Correct 7 ms 528 KB Output is correct
85 Correct 8 ms 604 KB Output is correct
86 Correct 7 ms 376 KB Output is correct
87 Correct 7 ms 556 KB Output is correct
88 Correct 7 ms 348 KB Output is correct
89 Correct 11 ms 2028 KB Output is correct
90 Correct 9 ms 1884 KB Output is correct
91 Correct 10 ms 2108 KB Output is correct
92 Correct 9 ms 1880 KB Output is correct
93 Correct 8 ms 1884 KB Output is correct
94 Correct 7 ms 2284 KB Output is correct
95 Correct 12 ms 2352 KB Output is correct
96 Correct 6 ms 2140 KB Output is correct
97 Correct 7 ms 2136 KB Output is correct
98 Correct 10 ms 1884 KB Output is correct
99 Correct 7 ms 1928 KB Output is correct
100 Correct 9 ms 1368 KB Output is correct
101 Correct 8 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 344 KB Output is correct
20 Correct 2 ms 604 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
25 Correct 1 ms 604 KB Output is correct
26 Correct 7 ms 344 KB Output is correct
27 Correct 14 ms 2008 KB Output is correct
28 Correct 11 ms 1788 KB Output is correct
29 Correct 5 ms 2300 KB Output is correct
30 Correct 7 ms 2360 KB Output is correct
31 Correct 8 ms 2048 KB Output is correct
32 Correct 8 ms 2520 KB Output is correct
33 Correct 6 ms 2520 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 1 ms 344 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Correct 1 ms 348 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 0 ms 348 KB Output is correct
43 Correct 0 ms 348 KB Output is correct
44 Correct 1 ms 344 KB Output is correct
45 Correct 0 ms 348 KB Output is correct
46 Correct 0 ms 348 KB Output is correct
47 Correct 1 ms 344 KB Output is correct
48 Correct 0 ms 600 KB Output is correct
49 Correct 0 ms 348 KB Output is correct
50 Correct 0 ms 348 KB Output is correct
51 Correct 1 ms 348 KB Output is correct
52 Correct 1 ms 348 KB Output is correct
53 Correct 0 ms 348 KB Output is correct
54 Correct 1 ms 348 KB Output is correct
55 Correct 1 ms 348 KB Output is correct
56 Correct 1 ms 348 KB Output is correct
57 Correct 1 ms 348 KB Output is correct
58 Correct 0 ms 348 KB Output is correct
59 Correct 1 ms 344 KB Output is correct
60 Correct 1 ms 348 KB Output is correct
61 Correct 1 ms 348 KB Output is correct
62 Correct 1 ms 344 KB Output is correct
63 Correct 1 ms 344 KB Output is correct
64 Correct 1 ms 348 KB Output is correct
65 Correct 1 ms 348 KB Output is correct
66 Correct 1 ms 348 KB Output is correct
67 Correct 2 ms 348 KB Output is correct
68 Correct 1 ms 348 KB Output is correct
69 Correct 1 ms 348 KB Output is correct
70 Correct 1 ms 348 KB Output is correct
71 Correct 2 ms 604 KB Output is correct
72 Correct 2 ms 604 KB Output is correct
73 Correct 2 ms 604 KB Output is correct
74 Correct 4 ms 604 KB Output is correct
75 Correct 2 ms 604 KB Output is correct
76 Correct 1 ms 604 KB Output is correct
77 Correct 2 ms 604 KB Output is correct
78 Correct 1 ms 604 KB Output is correct
79 Correct 2 ms 604 KB Output is correct
80 Correct 2 ms 604 KB Output is correct
81 Correct 2 ms 604 KB Output is correct
82 Correct 3 ms 472 KB Output is correct
83 Correct 1 ms 348 KB Output is correct
84 Correct 7 ms 528 KB Output is correct
85 Correct 8 ms 604 KB Output is correct
86 Correct 7 ms 376 KB Output is correct
87 Correct 7 ms 556 KB Output is correct
88 Correct 7 ms 348 KB Output is correct
89 Correct 11 ms 2028 KB Output is correct
90 Correct 9 ms 1884 KB Output is correct
91 Correct 10 ms 2108 KB Output is correct
92 Correct 9 ms 1880 KB Output is correct
93 Correct 8 ms 1884 KB Output is correct
94 Correct 7 ms 2284 KB Output is correct
95 Correct 12 ms 2352 KB Output is correct
96 Correct 6 ms 2140 KB Output is correct
97 Correct 7 ms 2136 KB Output is correct
98 Correct 10 ms 1884 KB Output is correct
99 Correct 7 ms 1928 KB Output is correct
100 Correct 9 ms 1368 KB Output is correct
101 Correct 8 ms 604 KB Output is correct
102 Correct 497 ms 3176 KB Output is correct
103 Correct 484 ms 3076 KB Output is correct
104 Correct 793 ms 125492 KB Output is correct
105 Correct 717 ms 8272 KB Output is correct
106 Correct 753 ms 5720 KB Output is correct
107 Execution timed out 1041 ms 99688 KB Time limit exceeded
108 Halted 0 ms 0 KB -