/*
We will use DP on connected componnents. The main idea is to add the elements one by one beginning from the one with the least value.
Also we will add the contribution of the difference between two consecutive values to the sum. The DP will have the following state:
dp[i][number of connected componnents (excluding corner componnents)][current sum][flag for left corner][flag for right corner].
The complexity will be O(N * N * L).
*/
#include <bits/stdc++.h>
#define endl '\n'
//#pragma GCC optimize ("O3")
//#pragma GCC target ("sse4")
#define SZ(x) ((int)x.size())
#define ALL(V) V.begin(), V.end()
#define L_B lower_bound
#define U_B upper_bound
using namespace std;
template<class T, class T2> inline int chkmax(T &x, const T2 &y) { return x < y ? x = y, 1 : 0; }
template<class T, class T2> inline int chkmin(T &x, const T2 &y) { return x > y ? x = y, 1 : 0; }
const int MAXN = 102;
const int MAXL = 1042;
const int mod = (int)1e9 + 7;
int n, l;
int a[MAXN];
void read()
{
cin >> n >> l;
for(int i = 1; i <= n; i++)
cin >> a[i];
}
int b[MAXN];
int dp[MAXN][MAXN][MAXL][2][2];
void add(int &x, int y)
{
x += y;
if(x >= mod)
x -= mod;
}
int mult(int x, int y) { return x * 1ll * y % mod; }
int rec(int i, int cnt, int S, int L, int R)
{
S += L * b[i];
S += R * b[i];
S += cnt * 2 * b[i];
if(S > l || cnt < 0)
return 0;
if(i == n - 1) /// Last position
return cnt == 0;
int &memo = dp[i][cnt][S][L][R];
if(memo != -1)
return memo;
memo = 0;
add(memo, mult(cnt * (cnt - 1), rec(i + 1, cnt - 1, S, L, R))); /// merge two comps
add(memo, mult(cnt, rec(i + 1, cnt - 1, S, 1, R))); /// add to L corner
add(memo, mult(cnt, rec(i + 1, cnt - 1, S, L, 1))); /// add to R corner
add(memo, rec(i + 1, cnt, S, 1, R)); /// new comp to L corner
add(memo, rec(i + 1, cnt, S, L, 1)); /// new comp to R corner
add(memo, rec(i + 1, cnt + 1, S, L, R)); /// new comp
add(memo, mult(2 * cnt, rec(i + 1, cnt, S, L, R))); /// extend existing comp
return memo;
}
void solve()
{
memset(dp, -1, sizeof(dp));
sort(a + 1, a + n + 1);
for(int i = 0; i < n; i++)
b[i] = i ? (a[i + 1] - a[i]) : 0;
cout << rec(0, 0, 0, 0, 0) << endl;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
read();
solve();
return 0;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
139 ms |
170188 KB |
Output is correct |
2 |
Correct |
142 ms |
170236 KB |
Output is correct |
3 |
Correct |
138 ms |
170348 KB |
Output is correct |
4 |
Correct |
136 ms |
170452 KB |
Output is correct |
5 |
Correct |
136 ms |
170548 KB |
Output is correct |
6 |
Correct |
136 ms |
170628 KB |
Output is correct |
7 |
Correct |
137 ms |
170732 KB |
Output is correct |
8 |
Correct |
135 ms |
170732 KB |
Output is correct |
9 |
Correct |
140 ms |
170732 KB |
Output is correct |
10 |
Correct |
140 ms |
170732 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
138 ms |
170732 KB |
Output is correct |
2 |
Correct |
139 ms |
170732 KB |
Output is correct |
3 |
Correct |
137 ms |
170732 KB |
Output is correct |
4 |
Correct |
136 ms |
170744 KB |
Output is correct |
5 |
Correct |
137 ms |
170764 KB |
Output is correct |
6 |
Correct |
141 ms |
170764 KB |
Output is correct |
7 |
Correct |
142 ms |
170764 KB |
Output is correct |
8 |
Correct |
138 ms |
170780 KB |
Output is correct |
9 |
Correct |
138 ms |
170780 KB |
Output is correct |
10 |
Correct |
138 ms |
170788 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
139 ms |
170188 KB |
Output is correct |
2 |
Correct |
142 ms |
170236 KB |
Output is correct |
3 |
Correct |
138 ms |
170348 KB |
Output is correct |
4 |
Correct |
136 ms |
170452 KB |
Output is correct |
5 |
Correct |
136 ms |
170548 KB |
Output is correct |
6 |
Correct |
136 ms |
170628 KB |
Output is correct |
7 |
Correct |
137 ms |
170732 KB |
Output is correct |
8 |
Correct |
135 ms |
170732 KB |
Output is correct |
9 |
Correct |
140 ms |
170732 KB |
Output is correct |
10 |
Correct |
140 ms |
170732 KB |
Output is correct |
11 |
Correct |
138 ms |
170732 KB |
Output is correct |
12 |
Correct |
139 ms |
170732 KB |
Output is correct |
13 |
Correct |
137 ms |
170732 KB |
Output is correct |
14 |
Correct |
136 ms |
170744 KB |
Output is correct |
15 |
Correct |
137 ms |
170764 KB |
Output is correct |
16 |
Correct |
141 ms |
170764 KB |
Output is correct |
17 |
Correct |
142 ms |
170764 KB |
Output is correct |
18 |
Correct |
138 ms |
170780 KB |
Output is correct |
19 |
Correct |
138 ms |
170780 KB |
Output is correct |
20 |
Correct |
138 ms |
170788 KB |
Output is correct |
21 |
Correct |
138 ms |
170792 KB |
Output is correct |
22 |
Correct |
433 ms |
170796 KB |
Output is correct |
23 |
Correct |
301 ms |
170800 KB |
Output is correct |
24 |
Correct |
315 ms |
170936 KB |
Output is correct |
25 |
Correct |
299 ms |
170936 KB |
Output is correct |
26 |
Correct |
269 ms |
170936 KB |
Output is correct |
27 |
Correct |
195 ms |
170936 KB |
Output is correct |
28 |
Correct |
217 ms |
170936 KB |
Output is correct |
29 |
Correct |
332 ms |
170936 KB |
Output is correct |
30 |
Correct |
334 ms |
170936 KB |
Output is correct |