답안 #848821

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
848821 2023-09-13T14:27:12 Z qthang2k11 Cats or Dogs (JOI18_catdog) C++17
100 / 100
335 ms 27732 KB
#include "catdog.h"
#include <bits/stdc++.h>
using namespace std;
 
const int N = 1e5 + 5;
 
vector<int> adj[N];
 
int par[N], chain[N], head[N], tail[N], tin[N], sz[N];
int tchain = 0, tcur = 0, n;
 
void dfs_size(int x, int p) {
	sz[x] = 1;
	par[x] = p;
	for (int y: adj[x]) {
		if (y == p) continue;
		dfs_size(y, x);
		sz[x] += sz[y];
	}
}
 
void dfs(int x) {
	tin[x] = ++tcur;	
	if (!chain[x]) {
		chain[x] = ++tchain;
		head[tchain] = x;
	}
	tail[chain[x]] = x;
	int spec = -1;
	for (int y: adj[x]) {
		if (y == par[x]) continue;
		if (spec == -1 || sz[y] > sz[spec])
			spec = y;
	}
	if (spec != -1) {
		chain[spec] = tchain;
		dfs(spec);
	}
	for (int y: adj[x])
		if (y != par[x] && y != spec)
			dfs(y);
}
 
const int INF = 1e9;
struct Node {
	int val[2][2];
	
	Node() = default;
	
	Node(bool set_inf) {
		if (set_inf) {
			for (int a: {0, 1})
				for (int b: {0, 1})
					val[a][b] = INF;
		}
	}
	
	int res() const {
		int ans = INF;
		for (int a: {0, 1})
			for (int b: {0, 1})
				ans = min(ans, val[a][b]);
		return ans;
	}
	
	Node operator + (const Node &other) const {
		Node ans;
		for (int a = 0; a < 2; a++) {
			for (int d = 0; d < 2; d++) {
				int cur = INF;
				for (int b = 0; b < 2; b++)
					for (int c = 0; c < 2; c++)
						cur = min(cur, val[a][b] + other.val[c][d] + (b != c));
				ans.val[a][d] = cur;
			}
		}
		return ans;
	}
} IT[N << 2];
 
int dp[N][2]; // only consider vertices NOT in heavy chain, segment tree will consider the rest + dp
int up_par[N][2]; // for chain_head to update dp[par]'s values
 
Node node_inf(true);
 
void build(int id, int l, int r) {
	if (l == r) {
		for (int a: {0, 1})
			for (int b: {0, 1})
				IT[id].val[a][b] = (a != b ? INF : 0);
		return;
	}
	int mid = (l + r) / 2;
	build(id << 1, l, mid);
	build(id << 1 | 1, mid + 1, r);
	IT[id] = IT[id << 1] + IT[id << 1 | 1];
}
 
void initialize(int n, vector<int> A, vector<int> B) {
	::n = n;
	for (int i = 0; i < n - 1; i++) {
		int x = A[i], y = B[i];
		adj[x].emplace_back(y);
		adj[y].emplace_back(x);
	}
	dfs_size(1, 0);
	dfs(1);
	build(1, 1, n);
}
 
void invalid_color(int x, int c, int id, int l, int r) {
	if (l == r) {
		// if (c ^ color) == 0 => skip
		IT[id] = node_inf;
		for (int col: {0, 1})
			if ((col + 1) ^ c)
				IT[id].val[col][col] = dp[x][col];
		return;
	}
	int mid = (l + r) / 2;
	if (x <= mid) invalid_color(x, c, id << 1, l, mid);
	else invalid_color(x, c, id << 1 | 1, mid + 1, r);
	IT[id] = IT[id << 1] + IT[id << 1 | 1];
}
 
void update_val(int x, int w[], int id, int l, int r) {
	if (l == r) {
		for (int c: {0, 1})
			if (IT[id].val[c][c] != INF)
				IT[id].val[c][c] += w[c];
		return;
	}
	int mid = (l + r) / 2;
	if (x <= mid) update_val(x, w, id << 1, l, mid);
	else update_val(x, w, id << 1 | 1, mid + 1, r);
	IT[id] = IT[id << 1] + IT[id << 1 | 1];
}
 
Node get_range(int x, int y, int id, int l, int r) {
	if (x <= l && r <= y) return IT[id];
	int mid = (l + r) / 2;
	if (y <= mid) return get_range(x, y, id << 1, l, mid);
	if (x > mid) return get_range(x, y, id << 1 | 1, mid + 1, r);
	return get_range(x, y, id << 1, l, mid) + get_range(x, y, id << 1 | 1, mid + 1, r);
}
 
int get(int x) {
	int xchain = chain[x], head_ = head[xchain], tail_ = tail[xchain];
	while (xchain != 1) {
		auto S = get_range(tin[head_], tin[tail_], 1, 1, n);
		int val[] = {min(S.val[0][0], S.val[0][1]), min(S.val[1][0], S.val[1][1])};
		int upd[] = {-up_par[tin[head_]][0] + min(val[0], val[1] + 1), 
								 -up_par[tin[head_]][1] + min(val[0] + 1, val[1])};
		update_val(tin[par[head_]], upd, 1, 1, n);
		dp[tin[par[head_]]][0] += upd[0];
		dp[tin[par[head_]]][1] += upd[1];
		up_par[tin[head_]][0] = min(val[0], val[1] + 1);
		up_par[tin[head_]][1] = min(val[0] + 1, val[1]);
		xchain = chain[par[head_]];
		tail_ = tail[xchain];
		head_ = head[xchain];
	}
	return get_range(tin[head_], tin[tail_], 1, 1, n).res();
}
 
int solve(int s, int c) {
	invalid_color(tin[s], c, 1, 1, n);
	return get(s);
}
 
int cat(int v) {
  return solve(v, 2);
}
 
int dog(int v) {
  return solve(v, 1);
}
 
int neighbor(int v) {
  return solve(v, 0);
}
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 8536 KB Output is correct
2 Correct 2 ms 8536 KB Output is correct
3 Correct 2 ms 8536 KB Output is correct
4 Correct 1 ms 8536 KB Output is correct
5 Correct 2 ms 8536 KB Output is correct
6 Correct 2 ms 8536 KB Output is correct
7 Correct 2 ms 8540 KB Output is correct
8 Correct 2 ms 8536 KB Output is correct
9 Correct 2 ms 8536 KB Output is correct
10 Correct 1 ms 8536 KB Output is correct
11 Correct 1 ms 8536 KB Output is correct
12 Correct 1 ms 8536 KB Output is correct
13 Correct 1 ms 8536 KB Output is correct
14 Correct 2 ms 8536 KB Output is correct
15 Correct 1 ms 8536 KB Output is correct
16 Correct 1 ms 8540 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 8536 KB Output is correct
2 Correct 2 ms 8536 KB Output is correct
3 Correct 2 ms 8536 KB Output is correct
4 Correct 1 ms 8536 KB Output is correct
5 Correct 2 ms 8536 KB Output is correct
6 Correct 2 ms 8536 KB Output is correct
7 Correct 2 ms 8540 KB Output is correct
8 Correct 2 ms 8536 KB Output is correct
9 Correct 2 ms 8536 KB Output is correct
10 Correct 1 ms 8536 KB Output is correct
11 Correct 1 ms 8536 KB Output is correct
12 Correct 1 ms 8536 KB Output is correct
13 Correct 1 ms 8536 KB Output is correct
14 Correct 2 ms 8536 KB Output is correct
15 Correct 1 ms 8536 KB Output is correct
16 Correct 1 ms 8540 KB Output is correct
17 Correct 3 ms 8536 KB Output is correct
18 Correct 2 ms 8536 KB Output is correct
19 Correct 2 ms 8536 KB Output is correct
20 Correct 2 ms 8536 KB Output is correct
21 Correct 2 ms 8536 KB Output is correct
22 Correct 2 ms 8536 KB Output is correct
23 Correct 2 ms 8536 KB Output is correct
24 Correct 3 ms 8536 KB Output is correct
25 Correct 3 ms 8536 KB Output is correct
26 Correct 2 ms 8540 KB Output is correct
27 Correct 1 ms 8540 KB Output is correct
28 Correct 2 ms 8536 KB Output is correct
29 Correct 3 ms 8792 KB Output is correct
30 Correct 2 ms 8536 KB Output is correct
31 Correct 2 ms 8536 KB Output is correct
32 Correct 2 ms 8540 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 8536 KB Output is correct
2 Correct 2 ms 8536 KB Output is correct
3 Correct 2 ms 8536 KB Output is correct
4 Correct 1 ms 8536 KB Output is correct
5 Correct 2 ms 8536 KB Output is correct
6 Correct 2 ms 8536 KB Output is correct
7 Correct 2 ms 8540 KB Output is correct
8 Correct 2 ms 8536 KB Output is correct
9 Correct 2 ms 8536 KB Output is correct
10 Correct 1 ms 8536 KB Output is correct
11 Correct 1 ms 8536 KB Output is correct
12 Correct 1 ms 8536 KB Output is correct
13 Correct 1 ms 8536 KB Output is correct
14 Correct 2 ms 8536 KB Output is correct
15 Correct 1 ms 8536 KB Output is correct
16 Correct 1 ms 8540 KB Output is correct
17 Correct 3 ms 8536 KB Output is correct
18 Correct 2 ms 8536 KB Output is correct
19 Correct 2 ms 8536 KB Output is correct
20 Correct 2 ms 8536 KB Output is correct
21 Correct 2 ms 8536 KB Output is correct
22 Correct 2 ms 8536 KB Output is correct
23 Correct 2 ms 8536 KB Output is correct
24 Correct 3 ms 8536 KB Output is correct
25 Correct 3 ms 8536 KB Output is correct
26 Correct 2 ms 8540 KB Output is correct
27 Correct 1 ms 8540 KB Output is correct
28 Correct 2 ms 8536 KB Output is correct
29 Correct 3 ms 8792 KB Output is correct
30 Correct 2 ms 8536 KB Output is correct
31 Correct 2 ms 8536 KB Output is correct
32 Correct 2 ms 8540 KB Output is correct
33 Correct 192 ms 15108 KB Output is correct
34 Correct 63 ms 14672 KB Output is correct
35 Correct 173 ms 14548 KB Output is correct
36 Correct 270 ms 19900 KB Output is correct
37 Correct 12 ms 12632 KB Output is correct
38 Correct 300 ms 20536 KB Output is correct
39 Correct 335 ms 20540 KB Output is correct
40 Correct 295 ms 20548 KB Output is correct
41 Correct 305 ms 20540 KB Output is correct
42 Correct 277 ms 20544 KB Output is correct
43 Correct 294 ms 20544 KB Output is correct
44 Correct 296 ms 20544 KB Output is correct
45 Correct 274 ms 20556 KB Output is correct
46 Correct 294 ms 20540 KB Output is correct
47 Correct 298 ms 20536 KB Output is correct
48 Correct 88 ms 18412 KB Output is correct
49 Correct 109 ms 19448 KB Output is correct
50 Correct 36 ms 12624 KB Output is correct
51 Correct 40 ms 13492 KB Output is correct
52 Correct 17 ms 12120 KB Output is correct
53 Correct 123 ms 19024 KB Output is correct
54 Correct 96 ms 13736 KB Output is correct
55 Correct 257 ms 18540 KB Output is correct
56 Correct 165 ms 14656 KB Output is correct
57 Correct 208 ms 19028 KB Output is correct
58 Correct 17 ms 13268 KB Output is correct
59 Correct 48 ms 13392 KB Output is correct
60 Correct 88 ms 19024 KB Output is correct
61 Correct 89 ms 19256 KB Output is correct
62 Correct 58 ms 17624 KB Output is correct
63 Correct 32 ms 16460 KB Output is correct
64 Correct 34 ms 18256 KB Output is correct
65 Correct 43 ms 24140 KB Output is correct
66 Correct 48 ms 13912 KB Output is correct
67 Correct 45 ms 20816 KB Output is correct
68 Correct 90 ms 24648 KB Output is correct
69 Correct 23 ms 10064 KB Output is correct
70 Correct 6 ms 8792 KB Output is correct
71 Correct 40 ms 16464 KB Output is correct
72 Correct 57 ms 23120 KB Output is correct
73 Correct 153 ms 27732 KB Output is correct
74 Correct 168 ms 24144 KB Output is correct
75 Correct 109 ms 27732 KB Output is correct
76 Correct 107 ms 26448 KB Output is correct
77 Correct 165 ms 24656 KB Output is correct