Submission #848742

# Submission time Handle Problem Language Result Execution time Memory
848742 2023-09-13T12:21:27 Z danikoynov Jail (JOI22_jail) C++14
100 / 100
1496 ms 311644 KB
/**
 ____ ____ ____ ____ ____ ____
||l |||e |||i |||n |||a |||d ||
||__|||__|||__|||__|||__|||__||
|/__\|/__\|/__\|/__\|/__\|/__\|

**/

#include<bits/stdc++.h>
#define endl '\n'

using namespace std;
typedef long long ll;

void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}

const int maxn = 2e5 + 10;

int n, m, s[maxn], t[maxn], parent[maxn];
vector < int > adj[maxn], children[maxn];
void input()
{
    cin >> n;
    for (int i = 1; i < n; i ++)
    {
        int a, b;
        cin >> a >> b;
        adj[a].push_back(b);
        adj[b].push_back(a);
    }
    cin >> m;
    for (int i = 1; i <= m; i ++)
    {
        cin >> s[i] >> t[i];
    }

}

int tin[maxn], tout[maxn], occ[2 * maxn], depth[maxn], timer;
int sub[maxn], heavy[maxn];
void euler(int v = 1, int p = -1)
{
    tin[v] = ++ timer;
    occ[timer] = v;
    sub[v] = 1;
    heavy[v] = -1;
    parent[v] = p;
    for (int u : adj[v])
    {
        if (u == p)
            continue;
        children[v].push_back(u);
        depth[u] = depth[v] + 1;
        euler(u, v);
        if (heavy[v] == -1 || sub[u] > sub[heavy[v]])
            heavy[v] = u;
        sub[v] += sub[u];
        occ[++ timer] = v;
    }
    tout[v] = timer;
}

const int maxlog = 20;
int dp[maxlog][maxn * 2], lg[2 * maxn];

void build_sparse_table()
{
    for (int i = 1; i <= timer; i ++)
    {
        dp[0][i] = occ[i];
        lg[i] = lg[i / 2] + 1;
    }

    for (int j = 1; j < lg[timer]; j ++)
    {
        for (int i = 1; i <= timer - (1 << j) + 1; i ++)
        {
            dp[j][i] = dp[j - 1][i + (1 << (j - 1))];
            if (depth[dp[j - 1][i]] < depth[dp[j][i]])
                dp[j][i] = dp[j - 1][i];
        }
    }
}

int get_lca(int v, int u)
{
    int l = tin[v], r = tin[u];
    if (l > r)
        swap(l, r);
    int len = lg[r - l + 1] - 1;
    int lca = dp[len][r - (1 << len) + 1];
    if (depth[dp[len][l]] < depth[lca])
        lca = dp[len][l];
    return lca;
}

vector < int > graph[10 * maxn];
bool is_cycle;

bool in_subtree(int v, int u)
{
    return (tin[v] <= tin[u] && tout[v] >= tout[u]);
}

bool on_path(int v, int u, int w)
{

    int lca = get_lca(v, u);
    if (in_subtree(lca, w) && in_subtree(w, v))
        return true;
    if (in_subtree(lca, w) && in_subtree(w, u))
        return true;
    return false;
}

void check_prisoners(int i, int j)
{
    /**if (on_path(s[i], t[i], s[j]) && on_path(s[i], t[i], t[j]))
    {
        is_cycle = true;
        return;
    }*/

    if (on_path(s[i], t[i], s[j]))
    {
        graph[i].push_back(j);
        return;
    }

    if (on_path(s[i], t[i], t[j]))
    {
        graph[j].push_back(i);
        return;
    }
}

vector < pair < int, int > > link[maxn];
set < pair < int, int > > loc_set[maxn];

bool cmp(pair < int, int > di, pair < int, int > dj)
{
    int i = di.second, j = dj.second;
    int d1 = depth[s[i]] + depth[t[i]] - 2 * depth[get_lca(s[i], t[i])];
    int d2 = depth[s[j]] + depth[t[j]] - 2 * depth[get_lca(s[j], t[j])];
    return d1 > d2;
}

bool check_range(int idx, int left, int right)
{
    pair < int, int > cur = {left, -1};
    set < pair < int, int > > :: iterator it = loc_set[idx].lower_bound(cur);
    if (it == loc_set[idx].end())
        return false;
    if (it -> first <= right)
        return true;
    return false;
}

int find_child(int v, int u)
{
    int lf = 0, rf = (int)(children[v].size()) - 1;
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (tout[children[v][mf]] < tin[u])
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    return children[v][lf];

}
void dfs(int v, int p)
{

    for (int u : adj[v])
    {
        if (u == p)
            continue;
        dfs(u, v);
        if (loc_set[u].size() > loc_set[v].size())
            swap(loc_set[u], loc_set[v]);

        for (pair < int, int > cur : loc_set[u])
        {
            pair < int, int > par = {tin[s[cur.second]], cur.second};
            if (tin[s[cur.second]] == cur.first)
                par.first = tin[t[cur.second]];
            if (loc_set[v].find(par) != loc_set[v].end())
                loc_set[v].erase(par);
            else
                loc_set[v].insert(cur);
        }
    }

    sort(link[v].begin(), link[v].end(), cmp);

    for (pair < int, int > cur : link[v])
    {
        pair < int, int > par = {tin[s[cur.second]], cur.second};
        if (tin[s[cur.second]] == cur.first)
            par.first = tin[t[cur.second]];
        ///cout << "here " << cur.first << " " << cur.second << " " << par.first << " " << par.second << " " << tin[s[cur.second]] << endl;
        if (loc_set[v].find(par) != loc_set[v].end())
        {
            loc_set[v].erase(par);
            continue;
        }
        int idx = cur.second, u = s[idx];
        if (u == v)
            u = t[idx];

        if (!in_subtree(u, v))
        {
            if (check_range(v, tin[u], tout[u]))
                is_cycle = true;
        }
        else
        {
            int child = find_child(u, v);
            ///cout << "HERE " << child << " " << u << endl;
            if (check_range(v, 1, tin[child] - 1) || check_range(v, tout[child] + 1, timer))
            {
                ///cout << "FOUND CYCLE " << v << " " << u << " " << child << endl;
                is_cycle = true;
            }
        }
        loc_set[v].insert(cur);
    }
    /**cout << v << " : " << p << endl;
    for (pair < int, int > cur : loc_set[v])
        cout << cur.first << " " << cur.second << endl;
    cout << "cycle " << is_cycle << endl;
        cout << "-------------" << endl;*/
}


struct chain
{
    int top, left, right;

} ch[maxn];

int ord[maxn], ch_idx[maxn], ch_cnt, to, ch_pos[maxn];


void hld(int v)
{
    ch_idx[v] = ch_cnt;
    ord[++ to] = v;
    ch[ch_idx[v]].right = to;
    ch_pos[v] = to;
    if (heavy[v] != -1)
        hld(heavy[v]);

    for (int u : children[v])
    {
        if (u == heavy[v])
            continue;

        ch_cnt ++;
        ch[ch_cnt].top = v;
        ch[ch_cnt].left = to + 1;
        ch[ch_cnt].right = to;
        hld(u);
    }
}

vector < int > ver_start[maxn], ver_end[maxn]; /// might be replaced
void add_edge(int v, int u)
{
    graph[v].push_back(u);
    ///cout << "edge " << v << " " << u << endl;
}
void build_forward_tree(int root, int left, int right)
{
    ///cout << root + m << " : " << left << " " << right << endl;
    if (left == right)
    {
        for (int v : ver_start[left])
            add_edge(root + m, v);
        ///graph[root + m].push_back(v);
        return;
    }

    int mid = (left + right) / 2;
    add_edge(root + m, root * 2 + m);
    add_edge(root + m, root * 2 + 1 + m);
    ///graph[root + m].push_back(root * 2 + m);
    ///graph[root + m].push_back(root * 2  + 1 + m);

    build_forward_tree(root * 2, left, mid);
    build_forward_tree(root * 2 + 1, mid + 1, right);
}

vector < int > bkt[maxn * 4];
void build_backward_tree(int root, int left, int right)
{
    bkt[root].clear();
    if (left == right)
    {
        for (int v : ver_end[left])
        {
            bkt[root].push_back(v);
            add_edge(v, root + m + 4 * n);
            ///graph[v].push_back(root + m + 4 * n);
            ///cout << v << " here " << left << endl;
        }
        return;
    }

    int mid = (left + right) / 2;
    ///add_edge(root * 2 + m + 4 * n, root + m + 4 * n);
    ///add_edge(root * 2 + 1 + m + 4 * n, root + m + 4 * n);

    ///graph[root * 2 + m + 4 * n].push_back(root + m + 4 * n);
    ///graph[root * 2  + 1 + m + 4 * n].push_back(root + m + 4 * n);

    build_backward_tree(root * 2, left, mid);
    build_backward_tree(root * 2 + 1, mid + 1, right);

    for (int v : bkt[root * 2])
        bkt[root].push_back(v);
    for (int v : bkt[root * 2 + 1])
        bkt[root].push_back(v);
    for (int v : bkt[root])
        add_edge(v, root + m + 4 * n);

}

void add_forward(int root, int left, int right, int qleft, int qright, int val)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        add_edge(val, root + m);
        ///graph[val].push_back(root + m);
        return;
    }

    int mid = (left + right) / 2;
    add_forward(root * 2, left, mid, qleft, qright, val);
    add_forward(root * 2 + 1, mid + 1, right, qleft, qright, val);
}

void add_backward(int root, int left, int right, int qleft, int qright, int val)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        add_edge(root + m + 4 * n, val);

        return;
    }

    int mid = (left + right) / 2;
    add_backward(root * 2, left, mid, qleft, qright, val);
    add_backward(root * 2 + 1, mid + 1, right, qleft, qright, val);
}

void add_path_forward(int v, int lca, int idx)
{

    while(ch_idx[v] != ch_idx[lca])
    {

        add_forward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        ///add_backward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        v = ch[ch_idx[v]].top;
    }
    ///cout << "idx " << idx << " " << ch_pos[lca] << " " << ch_pos[v] << endl;

    add_forward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
    ///add_backward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
}

void add_path_backward(int v, int lca, int idx)
{

    while(ch_idx[v] != ch_idx[lca])
    {

        ///add_forward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        add_backward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        v = ch[ch_idx[v]].top;
    }
    ///cout << "idx " << idx << " " << ch_pos[lca] << " " << ch_pos[v] << endl;

    ///add_forward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
    add_backward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
}
void build_graph()
{


    for (int i = 1; i <= m; i ++)
    {
        link[s[i]].push_back({tin[t[i]], i});
        link[t[i]].push_back({tin[s[i]], i});

    }

    dfs(1, -1);

    ch_cnt = 0;
    to = 0;
    ch[++ ch_cnt].top = 0;
    ch[ch_cnt].left = 1;
    ch[ch_cnt].right = 0;
    hld(1);
    /**for (int i = 1; i <= n; i ++)
        cout << ch_pos[i] << " ";
    cout << endl;*/
    for (int i = 1; i <= m; i ++)
    {
                ver_start[ch_pos[s[i]]].push_back(i);
        ver_end[ch_pos[t[i]]].push_back(i);
    }
    build_backward_tree(1, 1, n);
    build_forward_tree(1, 1, n);

    for (int i = 1; i <= m; i ++)
    {
        int lca = get_lca(s[i], t[i]);

        if (depth[s[i]] + depth[t[i]] - 2 * depth[lca] != 1)
        {

            int v = s[i], u = t[i];
            if (lca != v && lca != u)
            {
                v = parent[v];
                u = parent[u];
            }
            else if (lca == v)
            {
                v = find_child(v, u);
                u = parent[u];
            }
            else if (lca == u)
            {
                u = find_child(u, v);
                v = parent[v];

            }
            lca = get_lca(v, u);
            ///cout << "path " << v << " : " << u << endl;
            add_path_forward(v, lca, i);
            add_path_forward(u, lca, i);
            add_path_backward(v, lca, i);
            add_path_backward(u, lca, i);
        }

        for (pair < int, int > cur : link[s[i]])
        {
            if (i != cur.second)
                check_prisoners(i, cur.second);
        }

        for (pair < int, int > cur : link[t[i]])
        {
            if (i != cur.second)
                check_prisoners(i, cur.second);
        }



    }
    /**for (int i = 1; i <= m; i ++)
    {
        for (int j = 1; j <= m; j ++)
        {
            if (i != j)
                check_prisoners(i, j);
        }
    }*/
}

int used[maxn];

void check_dag(int v)
{
    used[v] = 1;
    for (int u : graph[v])
    {
        if (used[u] == 2)
            continue;
        ///cout << v << " : " << u << endl;
        if (used[u] == 1)
            is_cycle = 1;
        else
        {
            check_dag(u);
        }
    }
    used[v] = 2;
}

void check_graph()
{
    for (int i = 1; i <= m + 8 * n; i ++)
    {
        if (!used[i])
            check_dag(i);
    }

    if (is_cycle)
        cout << "No" << endl;
    else
        cout << "Yes" << endl;
}

void clear_data()
{
    is_cycle = false;
    for (int i = 1; i <= m + 8 * n; i ++)
    {
        bkt[i].clear();

        graph[i].clear(), used[i] = 0;
    }

    for (int i = 1; i <= ch_cnt; i ++)
    {
        ch[i].top = ch[i].left = ch[i].right = 0;
    }


    for (int i = 0; i <= n; i ++)
    {
        tin[i] = 0;
        tout[i] = 0;
        adj[i].clear();
        link[i].clear();
        ver_start[i].clear();
        ver_end[i].clear();
        children[i].clear();
        loc_set[i].clear();
    }


    timer = 0;
}

int test_num;
void solve()
{
    test_num ++;
    /**if (test_num <= 6)
    {
        cout << "SKIPPED" << endl;
        return;
    }*/
    input();
    euler();
    build_sparse_table();
    build_graph();
    check_graph();
    clear_data();

}

int main()
{
    speed();
    //freopen("test.txt", "r", stdin);
    int q;
    cin >> q;
    while(q --)
        solve();
    return 0;
}
/**
1
7
1 2
2 3
3 4
4 5
3 6
6 7
2
4 1
5 7

1
4
1 2
2 3
3 4
2
1 3
2 4


1
5
1 2
1 3
2 4
2 5
1
4 5

*/
# Verdict Execution time Memory Grader output
1 Correct 24 ms 117340 KB Output is correct
2 Correct 23 ms 117304 KB Output is correct
3 Correct 23 ms 113212 KB Output is correct
4 Correct 35 ms 123484 KB Output is correct
5 Correct 51 ms 123644 KB Output is correct
6 Correct 25 ms 123484 KB Output is correct
7 Correct 24 ms 123484 KB Output is correct
8 Correct 27 ms 123656 KB Output is correct
9 Correct 69 ms 134740 KB Output is correct
10 Correct 93 ms 171748 KB Output is correct
11 Correct 32 ms 119388 KB Output is correct
12 Correct 80 ms 123652 KB Output is correct
13 Correct 214 ms 200608 KB Output is correct
14 Correct 211 ms 201168 KB Output is correct
15 Correct 401 ms 206404 KB Output is correct
16 Correct 808 ms 247816 KB Output is correct
17 Correct 257 ms 212224 KB Output is correct
18 Correct 219 ms 218328 KB Output is correct
19 Correct 248 ms 208748 KB Output is correct
20 Correct 254 ms 208928 KB Output is correct
21 Correct 285 ms 211712 KB Output is correct
22 Correct 153 ms 198296 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 22 ms 117448 KB Output is correct
2 Correct 23 ms 113340 KB Output is correct
3 Correct 24 ms 123484 KB Output is correct
4 Correct 25 ms 123484 KB Output is correct
5 Correct 25 ms 123484 KB Output is correct
6 Correct 25 ms 123484 KB Output is correct
7 Correct 25 ms 123480 KB Output is correct
8 Correct 24 ms 123484 KB Output is correct
9 Correct 24 ms 123484 KB Output is correct
10 Correct 25 ms 123480 KB Output is correct
11 Correct 25 ms 123728 KB Output is correct
12 Correct 24 ms 123480 KB Output is correct
13 Correct 24 ms 123484 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 22 ms 117448 KB Output is correct
2 Correct 23 ms 113340 KB Output is correct
3 Correct 24 ms 123484 KB Output is correct
4 Correct 25 ms 123484 KB Output is correct
5 Correct 25 ms 123484 KB Output is correct
6 Correct 25 ms 123484 KB Output is correct
7 Correct 25 ms 123480 KB Output is correct
8 Correct 24 ms 123484 KB Output is correct
9 Correct 24 ms 123484 KB Output is correct
10 Correct 25 ms 123480 KB Output is correct
11 Correct 25 ms 123728 KB Output is correct
12 Correct 24 ms 123480 KB Output is correct
13 Correct 24 ms 123484 KB Output is correct
14 Correct 23 ms 117336 KB Output is correct
15 Correct 23 ms 117336 KB Output is correct
16 Correct 25 ms 123484 KB Output is correct
17 Correct 25 ms 123484 KB Output is correct
18 Correct 25 ms 123484 KB Output is correct
19 Correct 25 ms 117340 KB Output is correct
20 Correct 24 ms 123484 KB Output is correct
21 Correct 25 ms 123456 KB Output is correct
22 Correct 24 ms 123484 KB Output is correct
23 Correct 23 ms 117340 KB Output is correct
24 Correct 24 ms 123496 KB Output is correct
25 Correct 25 ms 123444 KB Output is correct
26 Correct 24 ms 123484 KB Output is correct
27 Correct 28 ms 123740 KB Output is correct
28 Correct 24 ms 119248 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 22 ms 117448 KB Output is correct
2 Correct 23 ms 113340 KB Output is correct
3 Correct 24 ms 123484 KB Output is correct
4 Correct 25 ms 123484 KB Output is correct
5 Correct 25 ms 123484 KB Output is correct
6 Correct 25 ms 123484 KB Output is correct
7 Correct 25 ms 123480 KB Output is correct
8 Correct 24 ms 123484 KB Output is correct
9 Correct 24 ms 123484 KB Output is correct
10 Correct 25 ms 123480 KB Output is correct
11 Correct 25 ms 123728 KB Output is correct
12 Correct 24 ms 123480 KB Output is correct
13 Correct 24 ms 123484 KB Output is correct
14 Correct 23 ms 117336 KB Output is correct
15 Correct 23 ms 117336 KB Output is correct
16 Correct 25 ms 123484 KB Output is correct
17 Correct 25 ms 123484 KB Output is correct
18 Correct 25 ms 123484 KB Output is correct
19 Correct 25 ms 117340 KB Output is correct
20 Correct 24 ms 123484 KB Output is correct
21 Correct 25 ms 123456 KB Output is correct
22 Correct 24 ms 123484 KB Output is correct
23 Correct 23 ms 117340 KB Output is correct
24 Correct 24 ms 123496 KB Output is correct
25 Correct 25 ms 123444 KB Output is correct
26 Correct 24 ms 123484 KB Output is correct
27 Correct 28 ms 123740 KB Output is correct
28 Correct 24 ms 119248 KB Output is correct
29 Correct 26 ms 123736 KB Output is correct
30 Correct 27 ms 123736 KB Output is correct
31 Correct 26 ms 123740 KB Output is correct
32 Correct 27 ms 123484 KB Output is correct
33 Correct 25 ms 123480 KB Output is correct
34 Correct 28 ms 123484 KB Output is correct
35 Correct 27 ms 123484 KB Output is correct
36 Correct 26 ms 123740 KB Output is correct
37 Correct 26 ms 123480 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 22 ms 117448 KB Output is correct
2 Correct 23 ms 113340 KB Output is correct
3 Correct 24 ms 123484 KB Output is correct
4 Correct 25 ms 123484 KB Output is correct
5 Correct 25 ms 123484 KB Output is correct
6 Correct 25 ms 123484 KB Output is correct
7 Correct 25 ms 123480 KB Output is correct
8 Correct 24 ms 123484 KB Output is correct
9 Correct 24 ms 123484 KB Output is correct
10 Correct 25 ms 123480 KB Output is correct
11 Correct 25 ms 123728 KB Output is correct
12 Correct 24 ms 123480 KB Output is correct
13 Correct 24 ms 123484 KB Output is correct
14 Correct 23 ms 117336 KB Output is correct
15 Correct 23 ms 117336 KB Output is correct
16 Correct 25 ms 123484 KB Output is correct
17 Correct 25 ms 123484 KB Output is correct
18 Correct 25 ms 123484 KB Output is correct
19 Correct 25 ms 117340 KB Output is correct
20 Correct 24 ms 123484 KB Output is correct
21 Correct 25 ms 123456 KB Output is correct
22 Correct 24 ms 123484 KB Output is correct
23 Correct 23 ms 117340 KB Output is correct
24 Correct 24 ms 123496 KB Output is correct
25 Correct 25 ms 123444 KB Output is correct
26 Correct 24 ms 123484 KB Output is correct
27 Correct 28 ms 123740 KB Output is correct
28 Correct 24 ms 119248 KB Output is correct
29 Correct 26 ms 123736 KB Output is correct
30 Correct 27 ms 123736 KB Output is correct
31 Correct 26 ms 123740 KB Output is correct
32 Correct 27 ms 123484 KB Output is correct
33 Correct 25 ms 123480 KB Output is correct
34 Correct 28 ms 123484 KB Output is correct
35 Correct 27 ms 123484 KB Output is correct
36 Correct 26 ms 123740 KB Output is correct
37 Correct 26 ms 123480 KB Output is correct
38 Correct 70 ms 134736 KB Output is correct
39 Correct 94 ms 171652 KB Output is correct
40 Correct 96 ms 134488 KB Output is correct
41 Correct 95 ms 134224 KB Output is correct
42 Correct 73 ms 134748 KB Output is correct
43 Correct 57 ms 133200 KB Output is correct
44 Correct 50 ms 128348 KB Output is correct
45 Correct 113 ms 151916 KB Output is correct
46 Correct 112 ms 151960 KB Output is correct
47 Correct 92 ms 161360 KB Output is correct
48 Correct 88 ms 161600 KB Output is correct
49 Correct 100 ms 152256 KB Output is correct
50 Correct 103 ms 152148 KB Output is correct
51 Correct 87 ms 154448 KB Output is correct
52 Correct 87 ms 154448 KB Output is correct
53 Correct 50 ms 133032 KB Output is correct
54 Correct 126 ms 151632 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 22 ms 117336 KB Output is correct
2 Correct 23 ms 117340 KB Output is correct
3 Correct 23 ms 117340 KB Output is correct
4 Correct 22 ms 113244 KB Output is correct
5 Correct 31 ms 119388 KB Output is correct
6 Correct 24 ms 123612 KB Output is correct
7 Correct 24 ms 123484 KB Output is correct
8 Correct 23 ms 117340 KB Output is correct
9 Correct 23 ms 117320 KB Output is correct
10 Correct 24 ms 123484 KB Output is correct
11 Correct 23 ms 119388 KB Output is correct
12 Correct 26 ms 123736 KB Output is correct
13 Correct 74 ms 123696 KB Output is correct
14 Correct 95 ms 123668 KB Output is correct
15 Correct 81 ms 123476 KB Output is correct
16 Correct 184 ms 160500 KB Output is correct
17 Correct 604 ms 209248 KB Output is correct
18 Correct 1220 ms 270108 KB Output is correct
19 Correct 262 ms 170928 KB Output is correct
20 Correct 270 ms 171204 KB Output is correct
21 Correct 261 ms 171348 KB Output is correct
22 Correct 573 ms 207944 KB Output is correct
23 Correct 420 ms 206100 KB Output is correct
24 Correct 463 ms 207964 KB Output is correct
25 Correct 433 ms 207036 KB Output is correct
26 Correct 464 ms 207200 KB Output is correct
27 Correct 589 ms 213472 KB Output is correct
28 Correct 607 ms 214708 KB Output is correct
29 Correct 609 ms 212064 KB Output is correct
30 Correct 362 ms 190808 KB Output is correct
31 Correct 357 ms 191980 KB Output is correct
32 Correct 357 ms 190408 KB Output is correct
33 Correct 375 ms 192180 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 24 ms 117340 KB Output is correct
2 Correct 23 ms 117304 KB Output is correct
3 Correct 23 ms 113212 KB Output is correct
4 Correct 35 ms 123484 KB Output is correct
5 Correct 51 ms 123644 KB Output is correct
6 Correct 25 ms 123484 KB Output is correct
7 Correct 24 ms 123484 KB Output is correct
8 Correct 27 ms 123656 KB Output is correct
9 Correct 69 ms 134740 KB Output is correct
10 Correct 93 ms 171748 KB Output is correct
11 Correct 32 ms 119388 KB Output is correct
12 Correct 80 ms 123652 KB Output is correct
13 Correct 214 ms 200608 KB Output is correct
14 Correct 211 ms 201168 KB Output is correct
15 Correct 401 ms 206404 KB Output is correct
16 Correct 808 ms 247816 KB Output is correct
17 Correct 257 ms 212224 KB Output is correct
18 Correct 219 ms 218328 KB Output is correct
19 Correct 248 ms 208748 KB Output is correct
20 Correct 254 ms 208928 KB Output is correct
21 Correct 285 ms 211712 KB Output is correct
22 Correct 153 ms 198296 KB Output is correct
23 Correct 22 ms 117448 KB Output is correct
24 Correct 23 ms 113340 KB Output is correct
25 Correct 24 ms 123484 KB Output is correct
26 Correct 25 ms 123484 KB Output is correct
27 Correct 25 ms 123484 KB Output is correct
28 Correct 25 ms 123484 KB Output is correct
29 Correct 25 ms 123480 KB Output is correct
30 Correct 24 ms 123484 KB Output is correct
31 Correct 24 ms 123484 KB Output is correct
32 Correct 25 ms 123480 KB Output is correct
33 Correct 25 ms 123728 KB Output is correct
34 Correct 24 ms 123480 KB Output is correct
35 Correct 24 ms 123484 KB Output is correct
36 Correct 23 ms 117336 KB Output is correct
37 Correct 23 ms 117336 KB Output is correct
38 Correct 25 ms 123484 KB Output is correct
39 Correct 25 ms 123484 KB Output is correct
40 Correct 25 ms 123484 KB Output is correct
41 Correct 25 ms 117340 KB Output is correct
42 Correct 24 ms 123484 KB Output is correct
43 Correct 25 ms 123456 KB Output is correct
44 Correct 24 ms 123484 KB Output is correct
45 Correct 23 ms 117340 KB Output is correct
46 Correct 24 ms 123496 KB Output is correct
47 Correct 25 ms 123444 KB Output is correct
48 Correct 24 ms 123484 KB Output is correct
49 Correct 28 ms 123740 KB Output is correct
50 Correct 24 ms 119248 KB Output is correct
51 Correct 26 ms 123736 KB Output is correct
52 Correct 27 ms 123736 KB Output is correct
53 Correct 26 ms 123740 KB Output is correct
54 Correct 27 ms 123484 KB Output is correct
55 Correct 25 ms 123480 KB Output is correct
56 Correct 28 ms 123484 KB Output is correct
57 Correct 27 ms 123484 KB Output is correct
58 Correct 26 ms 123740 KB Output is correct
59 Correct 26 ms 123480 KB Output is correct
60 Correct 70 ms 134736 KB Output is correct
61 Correct 94 ms 171652 KB Output is correct
62 Correct 96 ms 134488 KB Output is correct
63 Correct 95 ms 134224 KB Output is correct
64 Correct 73 ms 134748 KB Output is correct
65 Correct 57 ms 133200 KB Output is correct
66 Correct 50 ms 128348 KB Output is correct
67 Correct 113 ms 151916 KB Output is correct
68 Correct 112 ms 151960 KB Output is correct
69 Correct 92 ms 161360 KB Output is correct
70 Correct 88 ms 161600 KB Output is correct
71 Correct 100 ms 152256 KB Output is correct
72 Correct 103 ms 152148 KB Output is correct
73 Correct 87 ms 154448 KB Output is correct
74 Correct 87 ms 154448 KB Output is correct
75 Correct 50 ms 133032 KB Output is correct
76 Correct 126 ms 151632 KB Output is correct
77 Correct 22 ms 117336 KB Output is correct
78 Correct 23 ms 117340 KB Output is correct
79 Correct 23 ms 117340 KB Output is correct
80 Correct 22 ms 113244 KB Output is correct
81 Correct 31 ms 119388 KB Output is correct
82 Correct 24 ms 123612 KB Output is correct
83 Correct 24 ms 123484 KB Output is correct
84 Correct 23 ms 117340 KB Output is correct
85 Correct 23 ms 117320 KB Output is correct
86 Correct 24 ms 123484 KB Output is correct
87 Correct 23 ms 119388 KB Output is correct
88 Correct 26 ms 123736 KB Output is correct
89 Correct 74 ms 123696 KB Output is correct
90 Correct 95 ms 123668 KB Output is correct
91 Correct 81 ms 123476 KB Output is correct
92 Correct 184 ms 160500 KB Output is correct
93 Correct 604 ms 209248 KB Output is correct
94 Correct 1220 ms 270108 KB Output is correct
95 Correct 262 ms 170928 KB Output is correct
96 Correct 270 ms 171204 KB Output is correct
97 Correct 261 ms 171348 KB Output is correct
98 Correct 573 ms 207944 KB Output is correct
99 Correct 420 ms 206100 KB Output is correct
100 Correct 463 ms 207964 KB Output is correct
101 Correct 433 ms 207036 KB Output is correct
102 Correct 464 ms 207200 KB Output is correct
103 Correct 589 ms 213472 KB Output is correct
104 Correct 607 ms 214708 KB Output is correct
105 Correct 609 ms 212064 KB Output is correct
106 Correct 362 ms 190808 KB Output is correct
107 Correct 357 ms 191980 KB Output is correct
108 Correct 357 ms 190408 KB Output is correct
109 Correct 375 ms 192180 KB Output is correct
110 Correct 94 ms 123732 KB Output is correct
111 Correct 55 ms 123484 KB Output is correct
112 Correct 490 ms 203864 KB Output is correct
113 Correct 219 ms 177492 KB Output is correct
114 Correct 371 ms 196656 KB Output is correct
115 Correct 89 ms 152968 KB Output is correct
116 Correct 295 ms 182204 KB Output is correct
117 Correct 1496 ms 311644 KB Output is correct
118 Correct 121 ms 152108 KB Output is correct
119 Correct 116 ms 152264 KB Output is correct
120 Correct 50 ms 138064 KB Output is correct
121 Correct 392 ms 186748 KB Output is correct
122 Correct 369 ms 187344 KB Output is correct
123 Correct 244 ms 183788 KB Output is correct
124 Correct 241 ms 183380 KB Output is correct
125 Correct 273 ms 185688 KB Output is correct
126 Correct 859 ms 243112 KB Output is correct
127 Correct 391 ms 206672 KB Output is correct
128 Correct 288 ms 205504 KB Output is correct
129 Correct 279 ms 205492 KB Output is correct
130 Correct 301 ms 206052 KB Output is correct