Submission #848740

# Submission time Handle Problem Language Result Execution time Memory
848740 2023-09-13T12:16:47 Z danikoynov Jail (JOI22_jail) C++14
72 / 100
2077 ms 1048576 KB
/**
 ____ ____ ____ ____ ____ ____
||l |||e |||i |||n |||a |||d ||
||__|||__|||__|||__|||__|||__||
|/__\|/__\|/__\|/__\|/__\|/__\|

**/

#include<bits/stdc++.h>
#define endl '\n'

using namespace std;
typedef long long ll;

void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}

const int maxn = 2e5 + 10;

int n, m, s[maxn], t[maxn], parent[maxn];
vector < int > adj[maxn], children[maxn];
void input()
{
    cin >> n;
    for (int i = 1; i < n; i ++)
    {
        int a, b;
        cin >> a >> b;
        adj[a].push_back(b);
        adj[b].push_back(a);
    }
    cin >> m;
    for (int i = 1; i <= m; i ++)
    {
        cin >> s[i] >> t[i];
    }

}

int tin[maxn], tout[maxn], occ[2 * maxn], depth[maxn], timer;
int sub[maxn], heavy[maxn];
void euler(int v = 1, int p = -1)
{
    tin[v] = ++ timer;
    occ[timer] = v;
    sub[v] = 1;
    heavy[v] = -1;
    parent[v] = p;
    for (int u : adj[v])
    {
        if (u == p)
            continue;
        children[v].push_back(u);
        depth[u] = depth[v] + 1;
        euler(u, v);
        if (heavy[v] == -1 || sub[u] > sub[heavy[v]])
            heavy[v] = u;
        sub[v] += sub[u];
        occ[++ timer] = v;
    }
    tout[v] = timer;
}

const int maxlog = 20;
int dp[maxlog][maxn * 2], lg[2 * maxn];

void build_sparse_table()
{
    for (int i = 1; i <= timer; i ++)
    {
        dp[0][i] = occ[i];
        lg[i] = lg[i / 2] + 1;
    }

    for (int j = 1; j < lg[timer]; j ++)
    {
        for (int i = 1; i <= timer - (1 << j) + 1; i ++)
        {
            dp[j][i] = dp[j - 1][i + (1 << (j - 1))];
            if (depth[dp[j - 1][i]] < depth[dp[j][i]])
                dp[j][i] = dp[j - 1][i];
        }
    }
}

int get_lca(int v, int u)
{
    int l = tin[v], r = tin[u];
    if (l > r)
        swap(l, r);
    int len = lg[r - l + 1] - 1;
    int lca = dp[len][r - (1 << len) + 1];
    if (depth[dp[len][l]] < depth[lca])
        lca = dp[len][l];
    return lca;
}

vector < int > graph[10 * maxn];
bool is_cycle;

bool in_subtree(int v, int u)
{
    return (tin[v] <= tin[u] && tout[v] >= tout[u]);
}

bool on_path(int v, int u, int w)
{

    int lca = get_lca(v, u);
    if (in_subtree(lca, w) && in_subtree(w, v))
        return true;
    if (in_subtree(lca, w) && in_subtree(w, u))
        return true;
    return false;
}

void check_prisoners(int i, int j)
{
    /**if (on_path(s[i], t[i], s[j]) && on_path(s[i], t[i], t[j]))
    {
        is_cycle = true;
        return;
    }*/

    if (on_path(s[i], t[i], s[j]))
    {
        graph[i].push_back(j);
        return;
    }

    if (on_path(s[i], t[i], t[j]))
    {
        graph[j].push_back(i);
        return;
    }
}

vector < pair < int, int > > link[maxn];
set < pair < int, int > > loc_set[maxn];

bool cmp(pair < int, int > di, pair < int, int > dj)
{
    int i = di.second, j = dj.second;
    int d1 = depth[s[i]] + depth[t[i]] - 2 * depth[get_lca(s[i], t[i])];
    int d2 = depth[s[j]] + depth[t[j]] - 2 * depth[get_lca(s[j], t[j])];
    return d1 > d2;
}

bool check_range(int idx, int left, int right)
{
    pair < int, int > cur = {left, -1};
    set < pair < int, int > > :: iterator it = loc_set[idx].lower_bound(cur);
    if (it == loc_set[idx].end())
        return false;
    if (it -> first <= right)
        return true;
    return false;
}

int find_child(int v, int u)
{
    int lf = 0, rf = (int)(children[v].size()) - 1;
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (tout[children[v][mf]] < tin[u])
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    return children[v][lf];

}
void dfs(int v, int p)
{

    for (int u : adj[v])
    {
        if (u == p)
            continue;
        dfs(u, v);
        if (loc_set[u].size() > loc_set[v].size())
            swap(loc_set[u], loc_set[v]);

        for (pair < int, int > cur : loc_set[u])
        {
            pair < int, int > par = {tin[s[cur.second]], cur.second};
            if (tin[s[cur.second]] == cur.first)
                par.first = tin[t[cur.second]];
            if (loc_set[v].find(par) != loc_set[v].end())
                loc_set[v].erase(par);
            else
                loc_set[v].insert(cur);
        }
    }

    sort(link[v].begin(), link[v].end(), cmp);

    for (pair < int, int > cur : link[v])
    {
        pair < int, int > par = {tin[s[cur.second]], cur.second};
        if (tin[s[cur.second]] == cur.first)
            par.first = tin[t[cur.second]];
        ///cout << "here " << cur.first << " " << cur.second << " " << par.first << " " << par.second << " " << tin[s[cur.second]] << endl;
        if (loc_set[v].find(par) != loc_set[v].end())
        {
            loc_set[v].erase(par);
            continue;
        }
        int idx = cur.second, u = s[idx];
        if (u == v)
            u = t[idx];

        if (!in_subtree(u, v))
        {
            if (check_range(v, tin[u], tout[u]))
                is_cycle = true;
        }
        else
        {
            int child = find_child(u, v);
            ///cout << "HERE " << child << " " << u << endl;
            if (check_range(v, 1, tin[child] - 1) || check_range(v, tout[child] + 1, timer))
            {
                ///cout << "FOUND CYCLE " << v << " " << u << " " << child << endl;
                is_cycle = true;
            }
        }
        loc_set[v].insert(cur);
    }
    /**cout << v << " : " << p << endl;
    for (pair < int, int > cur : loc_set[v])
        cout << cur.first << " " << cur.second << endl;
    cout << "cycle " << is_cycle << endl;
        cout << "-------------" << endl;*/
}


struct chain
{
    int top, left, right;

} ch[maxn];

int ord[maxn], ch_idx[maxn], ch_cnt, to, ch_pos[maxn];


void hld(int v)
{
    ch_idx[v] = ch_cnt;
    ord[++ to] = v;
    ch[ch_idx[v]].right = to;
    ch_pos[v] = to;
    if (heavy[v] != -1)
        hld(heavy[v]);

    for (int u : children[v])
    {
        if (u == heavy[v])
            continue;

        ch_cnt ++;
        ch[ch_cnt].top = v;
        ch[ch_cnt].left = to + 1;
        ch[ch_cnt].right = to;
        hld(u);
    }
}

vector < int > ver_start[maxn], ver_end[maxn]; /// might be replaced
void add_edge(int v, int u)
{
    graph[v].push_back(u);
    ///cout << "edge " << v << " " << u << endl;
}
void build_forward_tree(int root, int left, int right)
{
    ///cout << root + m << " : " << left << " " << right << endl;
    if (left == right)
    {
        for (int v : ver_start[left])
            add_edge(root + m, v);
        ///graph[root + m].push_back(v);
        return;
    }

    int mid = (left + right) / 2;
    add_edge(root + m, root * 2 + m);
    add_edge(root + m, root * 2 + 1 + m);
    ///graph[root + m].push_back(root * 2 + m);
    ///graph[root + m].push_back(root * 2  + 1 + m);

    build_forward_tree(root * 2, left, mid);
    build_forward_tree(root * 2 + 1, mid + 1, right);
}

vector < int > bkt[maxn * 4];
void build_backward_tree(int root, int left, int right)
{
    bkt[root].clear();
    if (left == right)
    {
        for (int v : ver_end[left])
        {
            bkt[root].push_back(v);
            add_edge(v, root + m + 4 * n);
            ///graph[v].push_back(root + m + 4 * n);
            ///cout << v << " here " << left << endl;
        }
        return;
    }

    int mid = (left + right) / 2;
    ///add_edge(root * 2 + m + 4 * n, root + m + 4 * n);
    ///add_edge(root * 2 + 1 + m + 4 * n, root + m + 4 * n);

    ///graph[root * 2 + m + 4 * n].push_back(root + m + 4 * n);
    ///graph[root * 2  + 1 + m + 4 * n].push_back(root + m + 4 * n);

    build_backward_tree(root * 2, left, mid);
    build_backward_tree(root * 2 + 1, mid + 1, right);

    for (int v : bkt[root * 2])
        bkt[root].push_back(v);
    for (int v : bkt[root * 2 + 1])
        bkt[root].push_back(v);
    for (int v : bkt[root])
        add_edge(v, root + m + 4 * n);

}

void add_forward(int root, int left, int right, int qleft, int qright, int val)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        add_edge(val, root + m);
        ///graph[val].push_back(root + m);
        return;
    }

    int mid = (left + right) / 2;
    add_forward(root * 2, left, mid, qleft, qright, val);
    add_forward(root * 2 + 1, mid + 1, right, qleft, qright, val);
}

void add_backward(int root, int left, int right, int qleft, int qright, int val)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        for (int cur : bkt[root])
            add_edge(cur, val);
        ///add_edge(root + m + 4 * n, val);

        return;
    }

    int mid = (left + right) / 2;
    add_backward(root * 2, left, mid, qleft, qright, val);
    add_backward(root * 2 + 1, mid + 1, right, qleft, qright, val);
}

void add_path_forward(int v, int lca, int idx)
{

    while(ch_idx[v] != ch_idx[lca])
    {

        add_forward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        ///add_backward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        v = ch[ch_idx[v]].top;
    }
    ///cout << "idx " << idx << " " << ch_pos[lca] << " " << ch_pos[v] << endl;

    add_forward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
    ///add_backward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
}

void add_path_backward(int v, int lca, int idx)
{

    while(ch_idx[v] != ch_idx[lca])
    {

        ///add_forward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        add_backward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        v = ch[ch_idx[v]].top;
    }
    ///cout << "idx " << idx << " " << ch_pos[lca] << " " << ch_pos[v] << endl;

    ///add_forward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
    add_backward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
}
void build_graph()
{


    for (int i = 1; i <= m; i ++)
    {
        link[s[i]].push_back({tin[t[i]], i});
        link[t[i]].push_back({tin[s[i]], i});

    }

    dfs(1, -1);

    ch_cnt = 0;
    to = 0;
    ch[++ ch_cnt].top = 0;
    ch[ch_cnt].left = 1;
    ch[ch_cnt].right = 0;
    hld(1);
    /**for (int i = 1; i <= n; i ++)
        cout << ch_pos[i] << " ";
    cout << endl;*/
    for (int i = 1; i <= m; i ++)
    {
                ver_start[ch_pos[s[i]]].push_back(i);
        ver_end[ch_pos[t[i]]].push_back(i);
    }
    build_backward_tree(1, 1, n);
    build_forward_tree(1, 1, n);

    for (int i = 1; i <= m; i ++)
    {
        int lca = get_lca(s[i], t[i]);

        if (depth[s[i]] + depth[t[i]] - 2 * depth[lca] != 1)
        {

            int v = s[i], u = t[i];
            if (lca != v && lca != u)
            {
                v = parent[v];
                u = parent[u];
            }
            else if (lca == v)
            {
                v = find_child(v, u);
                u = parent[u];
            }
            else if (lca == u)
            {
                u = find_child(u, v);
                v = parent[v];

            }
            lca = get_lca(v, u);
            ///cout << "path " << v << " : " << u << endl;
            add_path_forward(v, lca, i);
            add_path_forward(u, lca, i);
            add_path_backward(v, lca, i);
            add_path_backward(u, lca, i);
        }

        for (pair < int, int > cur : link[s[i]])
        {
            if (i != cur.second)
                check_prisoners(i, cur.second);
        }

        for (pair < int, int > cur : link[t[i]])
        {
            if (i != cur.second)
                check_prisoners(i, cur.second);
        }



    }
    /**for (int i = 1; i <= m; i ++)
    {
        for (int j = 1; j <= m; j ++)
        {
            if (i != j)
                check_prisoners(i, j);
        }
    }*/
}

int used[maxn];

void check_dag(int v)
{
    used[v] = 1;
    for (int u : graph[v])
    {
        if (used[u] == 2)
            continue;
        ///cout << v << " : " << u << endl;
        if (used[u] == 1)
            is_cycle = 1;
        else
        {
            check_dag(u);
        }
    }
    used[v] = 2;
}

void check_graph()
{
    for (int i = 1; i <= m + 8 * n; i ++)
    {
        if (!used[i])
            check_dag(i);
    }

    if (is_cycle)
        cout << "No" << endl;
    else
        cout << "Yes" << endl;
}

void clear_data()
{
    is_cycle = false;
    for (int i = 1; i <= m + 8 * n; i ++)
    {
        bkt[i].clear();

        graph[i].clear(), used[i] = 0;
    }

    for (int i = 1; i <= ch_cnt; i ++)
    {
        ch[i].top = ch[i].left = ch[i].right = 0;
    }

    for (int i = 1; i <= n; i ++)
    {
        ch_pos[i] = 0;
        ch_idx[i]=  0;
        ord[i] = 0;
    }
    ch_cnt = 0;
    to = 0;
    for (int i = 0; i <= n; i ++)
    {
        tin[i] = 0;
        tout[i] = 0;
        adj[i].clear();
        link[i].clear();
        ver_start[i].clear();
        ver_end[i].clear();
        children[i].clear();
        loc_set[i].clear();
    }


    timer = 0;
}

int test_num;
void solve()
{
    test_num ++;
    /**if (test_num <= 6)
    {
        cout << "SKIPPED" << endl;
        return;
    }*/
    input();
    euler();
    build_sparse_table();
    build_graph();
    check_graph();
    clear_data();

}

int main()
{
    speed();
    //freopen("test.txt", "r", stdin);
    int q;
    cin >> q;
    while(q --)
        solve();
    return 0;
}
/**
1
7
1 2
2 3
3 4
4 5
3 6
6 7
2
4 1
5 7

1
4
1 2
2 3
3 4
2
1 3
2 4


1
5
1 2
1 3
2 4
2 5
1
4 5

*/
# Verdict Execution time Memory Grader output
1 Correct 24 ms 117328 KB Output is correct
2 Correct 24 ms 117336 KB Output is correct
3 Correct 23 ms 113208 KB Output is correct
4 Correct 36 ms 123480 KB Output is correct
5 Correct 48 ms 123480 KB Output is correct
6 Correct 25 ms 123480 KB Output is correct
7 Correct 25 ms 123472 KB Output is correct
8 Correct 26 ms 123740 KB Output is correct
9 Correct 74 ms 135800 KB Output is correct
10 Correct 91 ms 172368 KB Output is correct
11 Correct 31 ms 119352 KB Output is correct
12 Correct 80 ms 123728 KB Output is correct
13 Correct 227 ms 211160 KB Output is correct
14 Correct 220 ms 215840 KB Output is correct
15 Runtime error 2077 ms 1048576 KB Execution killed with signal 9
16 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 23 ms 117336 KB Output is correct
2 Correct 23 ms 113240 KB Output is correct
3 Correct 24 ms 123484 KB Output is correct
4 Correct 25 ms 123480 KB Output is correct
5 Correct 25 ms 123480 KB Output is correct
6 Correct 24 ms 123480 KB Output is correct
7 Correct 25 ms 123484 KB Output is correct
8 Correct 25 ms 123480 KB Output is correct
9 Correct 26 ms 123480 KB Output is correct
10 Correct 25 ms 123480 KB Output is correct
11 Correct 24 ms 123480 KB Output is correct
12 Correct 24 ms 123480 KB Output is correct
13 Correct 27 ms 123808 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 23 ms 117336 KB Output is correct
2 Correct 23 ms 113240 KB Output is correct
3 Correct 24 ms 123484 KB Output is correct
4 Correct 25 ms 123480 KB Output is correct
5 Correct 25 ms 123480 KB Output is correct
6 Correct 24 ms 123480 KB Output is correct
7 Correct 25 ms 123484 KB Output is correct
8 Correct 25 ms 123480 KB Output is correct
9 Correct 26 ms 123480 KB Output is correct
10 Correct 25 ms 123480 KB Output is correct
11 Correct 24 ms 123480 KB Output is correct
12 Correct 24 ms 123480 KB Output is correct
13 Correct 27 ms 123808 KB Output is correct
14 Correct 23 ms 117336 KB Output is correct
15 Correct 25 ms 117288 KB Output is correct
16 Correct 27 ms 123472 KB Output is correct
17 Correct 26 ms 123480 KB Output is correct
18 Correct 25 ms 123480 KB Output is correct
19 Correct 24 ms 117336 KB Output is correct
20 Correct 26 ms 123684 KB Output is correct
21 Correct 25 ms 123480 KB Output is correct
22 Correct 25 ms 123480 KB Output is correct
23 Correct 23 ms 117336 KB Output is correct
24 Correct 24 ms 123480 KB Output is correct
25 Correct 26 ms 123484 KB Output is correct
26 Correct 24 ms 123480 KB Output is correct
27 Correct 25 ms 123448 KB Output is correct
28 Correct 24 ms 119332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 23 ms 117336 KB Output is correct
2 Correct 23 ms 113240 KB Output is correct
3 Correct 24 ms 123484 KB Output is correct
4 Correct 25 ms 123480 KB Output is correct
5 Correct 25 ms 123480 KB Output is correct
6 Correct 24 ms 123480 KB Output is correct
7 Correct 25 ms 123484 KB Output is correct
8 Correct 25 ms 123480 KB Output is correct
9 Correct 26 ms 123480 KB Output is correct
10 Correct 25 ms 123480 KB Output is correct
11 Correct 24 ms 123480 KB Output is correct
12 Correct 24 ms 123480 KB Output is correct
13 Correct 27 ms 123808 KB Output is correct
14 Correct 23 ms 117336 KB Output is correct
15 Correct 25 ms 117288 KB Output is correct
16 Correct 27 ms 123472 KB Output is correct
17 Correct 26 ms 123480 KB Output is correct
18 Correct 25 ms 123480 KB Output is correct
19 Correct 24 ms 117336 KB Output is correct
20 Correct 26 ms 123684 KB Output is correct
21 Correct 25 ms 123480 KB Output is correct
22 Correct 25 ms 123480 KB Output is correct
23 Correct 23 ms 117336 KB Output is correct
24 Correct 24 ms 123480 KB Output is correct
25 Correct 26 ms 123484 KB Output is correct
26 Correct 24 ms 123480 KB Output is correct
27 Correct 25 ms 123448 KB Output is correct
28 Correct 24 ms 119332 KB Output is correct
29 Correct 27 ms 123736 KB Output is correct
30 Correct 27 ms 123736 KB Output is correct
31 Correct 27 ms 123736 KB Output is correct
32 Correct 27 ms 123728 KB Output is correct
33 Correct 26 ms 123696 KB Output is correct
34 Correct 27 ms 123740 KB Output is correct
35 Correct 27 ms 123736 KB Output is correct
36 Correct 27 ms 123752 KB Output is correct
37 Correct 25 ms 123736 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 23 ms 117336 KB Output is correct
2 Correct 23 ms 113240 KB Output is correct
3 Correct 24 ms 123484 KB Output is correct
4 Correct 25 ms 123480 KB Output is correct
5 Correct 25 ms 123480 KB Output is correct
6 Correct 24 ms 123480 KB Output is correct
7 Correct 25 ms 123484 KB Output is correct
8 Correct 25 ms 123480 KB Output is correct
9 Correct 26 ms 123480 KB Output is correct
10 Correct 25 ms 123480 KB Output is correct
11 Correct 24 ms 123480 KB Output is correct
12 Correct 24 ms 123480 KB Output is correct
13 Correct 27 ms 123808 KB Output is correct
14 Correct 23 ms 117336 KB Output is correct
15 Correct 25 ms 117288 KB Output is correct
16 Correct 27 ms 123472 KB Output is correct
17 Correct 26 ms 123480 KB Output is correct
18 Correct 25 ms 123480 KB Output is correct
19 Correct 24 ms 117336 KB Output is correct
20 Correct 26 ms 123684 KB Output is correct
21 Correct 25 ms 123480 KB Output is correct
22 Correct 25 ms 123480 KB Output is correct
23 Correct 23 ms 117336 KB Output is correct
24 Correct 24 ms 123480 KB Output is correct
25 Correct 26 ms 123484 KB Output is correct
26 Correct 24 ms 123480 KB Output is correct
27 Correct 25 ms 123448 KB Output is correct
28 Correct 24 ms 119332 KB Output is correct
29 Correct 27 ms 123736 KB Output is correct
30 Correct 27 ms 123736 KB Output is correct
31 Correct 27 ms 123736 KB Output is correct
32 Correct 27 ms 123728 KB Output is correct
33 Correct 26 ms 123696 KB Output is correct
34 Correct 27 ms 123740 KB Output is correct
35 Correct 27 ms 123736 KB Output is correct
36 Correct 27 ms 123752 KB Output is correct
37 Correct 25 ms 123736 KB Output is correct
38 Correct 72 ms 136700 KB Output is correct
39 Correct 97 ms 173844 KB Output is correct
40 Correct 91 ms 136016 KB Output is correct
41 Correct 95 ms 134948 KB Output is correct
42 Correct 75 ms 136276 KB Output is correct
43 Correct 58 ms 134224 KB Output is correct
44 Correct 48 ms 128600 KB Output is correct
45 Correct 119 ms 153120 KB Output is correct
46 Correct 107 ms 153272 KB Output is correct
47 Correct 89 ms 162640 KB Output is correct
48 Correct 93 ms 162640 KB Output is correct
49 Correct 105 ms 153872 KB Output is correct
50 Correct 96 ms 153632 KB Output is correct
51 Correct 86 ms 155984 KB Output is correct
52 Correct 87 ms 155984 KB Output is correct
53 Correct 43 ms 133240 KB Output is correct
54 Correct 112 ms 152952 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 22 ms 117336 KB Output is correct
2 Correct 23 ms 117432 KB Output is correct
3 Correct 23 ms 117336 KB Output is correct
4 Correct 23 ms 113240 KB Output is correct
5 Correct 31 ms 119384 KB Output is correct
6 Correct 24 ms 123480 KB Output is correct
7 Correct 24 ms 123480 KB Output is correct
8 Correct 23 ms 117340 KB Output is correct
9 Correct 24 ms 117336 KB Output is correct
10 Correct 26 ms 123852 KB Output is correct
11 Correct 23 ms 119384 KB Output is correct
12 Correct 26 ms 123736 KB Output is correct
13 Correct 73 ms 124240 KB Output is correct
14 Correct 91 ms 124512 KB Output is correct
15 Correct 79 ms 124240 KB Output is correct
16 Correct 193 ms 161372 KB Output is correct
17 Correct 588 ms 209328 KB Output is correct
18 Correct 1218 ms 274660 KB Output is correct
19 Correct 250 ms 170832 KB Output is correct
20 Correct 257 ms 171264 KB Output is correct
21 Correct 252 ms 171344 KB Output is correct
22 Correct 519 ms 209336 KB Output is correct
23 Correct 408 ms 207108 KB Output is correct
24 Correct 450 ms 210320 KB Output is correct
25 Correct 441 ms 208812 KB Output is correct
26 Correct 476 ms 209136 KB Output is correct
27 Correct 616 ms 215264 KB Output is correct
28 Correct 653 ms 216468 KB Output is correct
29 Correct 685 ms 213576 KB Output is correct
30 Correct 449 ms 188192 KB Output is correct
31 Correct 427 ms 188832 KB Output is correct
32 Correct 409 ms 190528 KB Output is correct
33 Correct 447 ms 191692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 24 ms 117328 KB Output is correct
2 Correct 24 ms 117336 KB Output is correct
3 Correct 23 ms 113208 KB Output is correct
4 Correct 36 ms 123480 KB Output is correct
5 Correct 48 ms 123480 KB Output is correct
6 Correct 25 ms 123480 KB Output is correct
7 Correct 25 ms 123472 KB Output is correct
8 Correct 26 ms 123740 KB Output is correct
9 Correct 74 ms 135800 KB Output is correct
10 Correct 91 ms 172368 KB Output is correct
11 Correct 31 ms 119352 KB Output is correct
12 Correct 80 ms 123728 KB Output is correct
13 Correct 227 ms 211160 KB Output is correct
14 Correct 220 ms 215840 KB Output is correct
15 Runtime error 2077 ms 1048576 KB Execution killed with signal 9
16 Halted 0 ms 0 KB -