Submission #848723

# Submission time Handle Problem Language Result Execution time Memory
848723 2023-09-13T11:18:46 Z danikoynov Jail (JOI22_jail) C++14
5 / 100
766 ms 240756 KB
/**
 ____ ____ ____ ____ ____ ____
||l |||e |||i |||n |||a |||d ||
||__|||__|||__|||__|||__|||__||
|/__\|/__\|/__\|/__\|/__\|/__\|

**/

#include<bits/stdc++.h>
#define endl '\n'

using namespace std;
typedef long long ll;

void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}

const int maxn = 2e5 + 10;

int n, m, s[maxn], t[maxn], parent[maxn];
vector < int > adj[maxn], children[maxn];
void input()
{
    cin >> n;
    for (int i = 1; i < n; i ++)
    {
        int a, b;
        cin >> a >> b;
        adj[a].push_back(b);
        adj[b].push_back(a);
    }
    cin >> m;
    for (int i = 1; i <= m; i ++)
    {
        cin >> s[i] >> t[i];
    }

}

int tin[maxn], tout[maxn], occ[2 * maxn], depth[maxn], timer;
int sub[maxn], heavy[maxn];
void euler(int v = 1, int p = -1)
{
    tin[v] = ++ timer;
    occ[timer] = v;
    sub[v] = 1;
    heavy[v] = -1;
    parent[v] = p;
    for (int u : adj[v])
    {
        if (u == p)
            continue;
        children[v].push_back(u);
        depth[u] = depth[v] + 1;
        euler(u, v);
        if (heavy[v] == -1 || sub[u] > sub[heavy[v]])
            heavy[v] = u;
        sub[v] += sub[u];
        occ[++ timer] = v;
    }
    tout[v] = timer;
}

const int maxlog = 20;
int dp[maxlog][maxn * 2], lg[2 * maxn];

void build_sparse_table()
{
    for (int i = 1; i <= timer; i ++)
    {
        dp[0][i] = occ[i];
        lg[i] = lg[i / 2] + 1;
    }

    for (int j = 1; j < lg[timer]; j ++)
    {
        for (int i = 1; i <= timer - (1 << j) + 1; i ++)
        {
            dp[j][i] = dp[j - 1][i + (1 << (j - 1))];
            if (depth[dp[j - 1][i]] < depth[dp[j][i]])
                dp[j][i] = dp[j - 1][i];
        }
    }
}

int get_lca(int v, int u)
{
    int l = tin[v], r = tin[u];
    if (l > r)
        swap(l, r);
    int len = lg[r - l + 1] - 1;
    int lca = dp[len][r - (1 << len) + 1];
    if (depth[dp[len][l]] < depth[lca])
        lca = dp[len][l];
    return lca;
}

vector < int > graph[10 * maxn];
bool is_cycle;

bool in_subtree(int v, int u)
{
    return (tin[v] <= tin[u] && tout[v] >= tout[u]);
}

bool on_path(int v, int u, int w)
{

    int lca = get_lca(v, u);
    if (in_subtree(lca, w) && in_subtree(w, v))
        return true;
    if (in_subtree(lca, w) && in_subtree(w, u))
        return true;
    return false;
}

void check_prisoners(int i, int j)
{
    /**if (on_path(s[i], t[i], s[j]) && on_path(s[i], t[i], t[j]))
    {
        is_cycle = true;
        return;
    }*/

    if (on_path(s[i], t[i], s[j]))
    {
        graph[i].push_back(j);
        return;
    }

    if (on_path(s[i], t[i], t[j]))
    {
        graph[j].push_back(i);
        return;
    }
}

vector < pair < int, int > > link[maxn];
set < pair < int, int > > loc_set[maxn];

bool cmp(pair < int, int > di, pair < int, int > dj)
{
    int i = di.second, j = dj.second;
    int d1 = depth[s[i]] + depth[t[i]] - 2 * depth[get_lca(s[i], t[i])];
    int d2 = depth[s[j]] + depth[t[j]] - 2 * depth[get_lca(s[j], t[j])];
    return d1 > d2;
}

bool check_range(int idx, int left, int right)
{
    pair < int, int > cur = {left, -1};
    set < pair < int, int > > :: iterator it = loc_set[idx].lower_bound(cur);
    if (it == loc_set[idx].end())
        return false;
    if (it -> first <= right)
        return true;
    return false;
}

int find_child(int v, int u)
{
    int lf = 0, rf = (int)(children[v].size()) - 1;
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (tout[children[v][mf]] < tin[u])
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    return children[v][lf];

}
void dfs(int v, int p)
{

    for (int u : adj[v])
    {
        if (u == p)
            continue;
        dfs(u, v);
        if (loc_set[u].size() > loc_set[v].size())
            swap(loc_set[u], loc_set[v]);

        for (pair < int, int > cur : loc_set[u])
        {
            pair < int, int > par = {tin[s[cur.second]], cur.second};
            if (tin[s[cur.second]] == cur.first)
                par.first = tin[t[cur.second]];
            if (loc_set[v].find(par) != loc_set[v].end())
                loc_set[v].erase(par);
            else
                loc_set[v].insert(cur);
        }
    }

    sort(link[v].begin(), link[v].end(), cmp);

    for (pair < int, int > cur : link[v])
    {
        pair < int, int > par = {tin[s[cur.second]], cur.second};
        if (tin[s[cur.second]] == cur.first)
            par.first = tin[t[cur.second]];
        ///cout << "here " << cur.first << " " << cur.second << " " << par.first << " " << par.second << " " << tin[s[cur.second]] << endl;
        if (loc_set[v].find(par) != loc_set[v].end())
        {
            loc_set[v].erase(par);
            continue;
        }
        int idx = cur.second, u = s[idx];
        if (u == v)
            u = t[idx];

        if (!in_subtree(u, v))
        {
            if (check_range(v, tin[u], tout[u]))
                is_cycle = true;
        }
        else
        {
            int child = find_child(u, v);
            ///cout << "HERE " << child << " " << u << endl;
            if (check_range(v, 1, tin[child] - 1) || check_range(v, tout[child] + 1, timer))
            {
                ///cout << "FOUND CYCLE " << v << " " << u << " " << child << endl;
                is_cycle = true;
            }
        }
        loc_set[v].insert(cur);
    }
    /**cout << v << " : " << p << endl;
    for (pair < int, int > cur : loc_set[v])
        cout << cur.first << " " << cur.second << endl;
    cout << "cycle " << is_cycle << endl;
        cout << "-------------" << endl;*/
}


struct chain
{
    int top, left, right;

} ch[maxn];

int ord[maxn], ch_idx[maxn], ch_cnt, to, ch_pos[maxn];


void hld(int v)
{
    ch_idx[v] = ch_cnt;
    ord[++ to] = v;
    ch[ch_idx[v]].right = to;
    ch_pos[v] = to;
    if (heavy[v] != -1)
        hld(heavy[v]);

    for (int u : children[v])
    {
        if (u == heavy[v])
            continue;

        ch_cnt ++;
        ch[ch_cnt].top = v;
        ch[ch_cnt].left = to + 1;
        ch[ch_cnt].right = to;
        hld(u);
    }
}

vector < int > ver_start[maxn], ver_end[maxn]; /// might be replaced
void add_edge(int v, int u)
{
    graph[v].push_back(u);
    ///cout << v << " " << u << endl;
}
void build_forward_tree(int root, int left, int right)
{
    ///cout << root + m << " : " << left << " " << right << endl;
    if (left == right)
    {
        for (int v : ver_start[left])
            add_edge(root + m, v);
        ///graph[root + m].push_back(v);
        return;
    }

    int mid = (left + right) / 2;
    add_edge(root + m, root * 2 + m);
    add_edge(root + m, root * 2 + 1 + m);
    ///graph[root + m].push_back(root * 2 + m);
    ///graph[root + m].push_back(root * 2  + 1 + m);

    build_forward_tree(root * 2, left, mid);
    build_forward_tree(root * 2 + 1, mid + 1, right);
}

vector < int > bkt[maxn * 4];
void build_backward_tree(int root, int left, int right)
{
    bkt[root].clear();
    if (left == right)
    {
        for (int v : ver_end[left])
        {
            bkt[root].push_back(v);
            add_edge(v, root + m + 4 * n);
            ///graph[v].push_back(root + m + 4 * n);
            ///cout << v << " here " << left << endl;
        }
        return;
    }

    int mid = (left + right) / 2;
    ///add_edge(root * 2 + m + 4 * n, root + m + 4 * n);
    ///add_edge(root * 2 + 1 + m + 4 * n, root + m + 4 * n);

    ///graph[root * 2 + m + 4 * n].push_back(root + m + 4 * n);
    ///graph[root * 2  + 1 + m + 4 * n].push_back(root + m + 4 * n);

    build_backward_tree(root * 2, left, mid);
    build_backward_tree(root * 2 + 1, mid + 1, right);

    for (int v : bkt[root * 2])
        bkt[root].push_back(v);
    for (int v : bkt[root * 2 + 1])
        bkt[root].push_back(v);
    for (int v : bkt[root])
        add_edge(v, root + m + 4 * n);

}

void add_forward(int root, int left, int right, int qleft, int qright, int val)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        add_edge(val, root + m);
        ///graph[val].push_back(root + m);
        return;
    }

    int mid = (left + right) / 2;
    add_forward(root * 2, left, mid, qleft, qright, val);
    add_forward(root * 2 + 1, mid + 1, right, qleft, qright, val);
}

void add_backward(int root, int left, int right, int qleft, int qright, int val)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        add_edge(root + m + 4 * n, val);
        ///graph[root + m + 4 * n].push_back(val);
        return;
    }

    int mid = (left + right) / 2;
    add_backward(root * 2, left, mid, qleft, qright, val);
    add_backward(root * 2 + 1, mid + 1, right, qleft, qright, val);
}

void add_path_forward(int v, int lca, int idx)
{

    while(ch_idx[v] != ch_idx[lca])
    {

        add_forward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        ///add_backward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        v = ch[ch_idx[v]].top;
    }
    ///cout << "idx " << idx << " " << ch_pos[lca] << " " << ch_pos[v] << endl;

    add_forward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
    ///add_backward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
}

void add_path_backward(int v, int lca, int idx)
{

    while(ch_idx[v] != ch_idx[lca])
    {

        ///add_forward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        add_backward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        v = ch[ch_idx[v]].top;
    }
    ///cout << "idx " << idx << " " << ch_pos[lca] << " " << ch_pos[v] << endl;

    ///add_forward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
    add_backward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
}
void build_graph()
{
    for (int i = 1; i <= m; i ++)
    {
        link[s[i]].push_back({tin[t[i]], i});
        link[t[i]].push_back({tin[s[i]], i});
        ver_start[s[i]].push_back(i);
        ver_end[t[i]].push_back(i);
    }


    ch_cnt = 0;
    to = 0;
    ch[++ ch_cnt].top = 0;
    ch[ch_cnt].left = 1;
    ch[ch_cnt].right = 0;
    hld(1);

    build_backward_tree(1, 1, n);
    build_forward_tree(1, 1, n);

    for (int i = 1; i <= m; i ++)
    {
        int lca = get_lca(s[i], t[i]);

        if (depth[s[i]] + depth[t[i]] - 2 * depth[lca] != 1)
        {

            int v = s[i], u = t[i];
            if (lca != v && lca != u)
            {
                v = parent[v];
                u = parent[u];
            }
            else if (lca == v)
            {
                v = find_child(v, u);
                u = parent[u];
            }
            else if (lca == u)
            {
                u = find_child(u, v);
                v = parent[v];

            }
            lca = get_lca(v, u);
            ///cout << "path " << v << " : " << u << endl;
            add_path_forward(v, lca, i);
            add_path_forward(u, lca, i);
            add_path_backward(v, lca, i);
            add_path_backward(u, lca, i);
        }

        for (pair < int, int > cur : link[s[i]])
        {
            if (i != cur.second)
                check_prisoners(i, cur.second);
        }

                for (pair < int, int > cur : link[t[i]])
        {
            if (i != cur.second)
                check_prisoners(i, cur.second);
        }



    }
    /**for (int i = 1; i <= m; i ++)
    {
        for (int j = 1; j <= m; j ++)
        {
            if (i != j)
                check_prisoners(i, j);
        }
    }*/
}

int used[maxn];

void check_dag(int v)
{
    used[v] = 1;
    for (int u : graph[v])
    {
        if (used[u] == 2)
            continue;
        ///cout << v << " : " << u << endl;
        if (used[u] == 1)
            is_cycle = 1;
        else
        {
            check_dag(u);
        }
    }
    used[v] = 2;
}

void check_graph()
{
    for (int i = 1; i <= m + 8 * n; i ++)
    {
        if (!used[i])
            check_dag(i);
    }

    if (is_cycle)
        cout << "No" << endl;
    else
        cout << "Yes" << endl;
}

void clear_data()
{
    is_cycle = false;
    for (int i = 1; i <= m + 8 * n; i ++)
        graph[i].clear(), used[i] = 0;

    for (int i = 1; i <= n; i ++)
    {
        adj[i].clear();
        link[i].clear();
        ver_start[i].clear();
        ver_end[i].clear();
        children[i].clear();
        loc_set[i].clear();
    }


    timer = 0;
}

void solve()
{
    input();
    euler();
    build_sparse_table();
    build_graph();
    check_graph();
    clear_data();

}

int main()
{
    speed();
    ///freopen("test.txt", "r", stdin);
    int q;
    cin >> q;
    while(q --)
        solve();
    return 0;
}
/**
1
7
1 2
2 3
3 4
4 5
3 6
6 7
2
4 1
5 7

1
4
1 2
2 3
3 4
2
1 3
2 4


1
5
1 2
1 3
2 4
2 5
1
4 5

*/

# Verdict Execution time Memory Grader output
1 Correct 24 ms 117336 KB Output is correct
2 Correct 24 ms 117448 KB Output is correct
3 Correct 22 ms 113240 KB Output is correct
4 Correct 40 ms 123640 KB Output is correct
5 Correct 49 ms 123636 KB Output is correct
6 Correct 25 ms 123480 KB Output is correct
7 Correct 25 ms 123480 KB Output is correct
8 Correct 26 ms 123708 KB Output is correct
9 Correct 69 ms 134700 KB Output is correct
10 Correct 83 ms 164148 KB Output is correct
11 Correct 30 ms 119608 KB Output is correct
12 Correct 72 ms 123644 KB Output is correct
13 Correct 203 ms 192988 KB Output is correct
14 Correct 199 ms 192972 KB Output is correct
15 Correct 358 ms 198892 KB Output is correct
16 Correct 766 ms 240756 KB Output is correct
17 Correct 241 ms 204652 KB Output is correct
18 Correct 205 ms 210792 KB Output is correct
19 Correct 217 ms 201112 KB Output is correct
20 Correct 220 ms 201248 KB Output is correct
21 Correct 264 ms 203980 KB Output is correct
22 Correct 143 ms 190952 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 25 ms 117336 KB Output is correct
2 Correct 24 ms 113496 KB Output is correct
3 Correct 25 ms 123480 KB Output is correct
4 Incorrect 25 ms 123412 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 25 ms 117336 KB Output is correct
2 Correct 24 ms 113496 KB Output is correct
3 Correct 25 ms 123480 KB Output is correct
4 Incorrect 25 ms 123412 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 25 ms 117336 KB Output is correct
2 Correct 24 ms 113496 KB Output is correct
3 Correct 25 ms 123480 KB Output is correct
4 Incorrect 25 ms 123412 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 25 ms 117336 KB Output is correct
2 Correct 24 ms 113496 KB Output is correct
3 Correct 25 ms 123480 KB Output is correct
4 Incorrect 25 ms 123412 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 23 ms 117336 KB Output is correct
2 Correct 24 ms 117336 KB Output is correct
3 Correct 23 ms 117340 KB Output is correct
4 Correct 23 ms 113496 KB Output is correct
5 Correct 31 ms 119384 KB Output is correct
6 Correct 24 ms 123484 KB Output is correct
7 Incorrect 25 ms 123480 KB Output isn't correct
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 24 ms 117336 KB Output is correct
2 Correct 24 ms 117448 KB Output is correct
3 Correct 22 ms 113240 KB Output is correct
4 Correct 40 ms 123640 KB Output is correct
5 Correct 49 ms 123636 KB Output is correct
6 Correct 25 ms 123480 KB Output is correct
7 Correct 25 ms 123480 KB Output is correct
8 Correct 26 ms 123708 KB Output is correct
9 Correct 69 ms 134700 KB Output is correct
10 Correct 83 ms 164148 KB Output is correct
11 Correct 30 ms 119608 KB Output is correct
12 Correct 72 ms 123644 KB Output is correct
13 Correct 203 ms 192988 KB Output is correct
14 Correct 199 ms 192972 KB Output is correct
15 Correct 358 ms 198892 KB Output is correct
16 Correct 766 ms 240756 KB Output is correct
17 Correct 241 ms 204652 KB Output is correct
18 Correct 205 ms 210792 KB Output is correct
19 Correct 217 ms 201112 KB Output is correct
20 Correct 220 ms 201248 KB Output is correct
21 Correct 264 ms 203980 KB Output is correct
22 Correct 143 ms 190952 KB Output is correct
23 Correct 25 ms 117336 KB Output is correct
24 Correct 24 ms 113496 KB Output is correct
25 Correct 25 ms 123480 KB Output is correct
26 Incorrect 25 ms 123412 KB Output isn't correct
27 Halted 0 ms 0 KB -