Submission #845218

# Submission time Handle Problem Language Result Execution time Memory
845218 2023-09-06T12:39:20 Z hamerin Race (IOI11_race) C++17
100 / 100
709 ms 105136 KB
#include <bits/stdc++.h>

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

using namespace std;

using li = long long;
using ld = long double;
using pi = pair<int, int>;
using pli = pair<li, li>;

#define all(c) c.begin(), c.end()
#define prec(n) setprecision(n) << fixed

template <typename K, typename V>
class map_m : public map<K, V> {
   public:
    auto emplace_minimal(K k, V v) {
        auto [it, success] = this->try_emplace(k, v);
        if (!success && it->second > v) it->second = v;
        return it;
    }
};

class Tree {
   public:
    int V, R;
    vector<vector<pair<int, li>>> adj, tr;
    vector<int> sz, pr, ofl;
    vector<map_m<li, int>> mp;
    vector<li> ofw;

    explicit Tree(int _V)
        : V(_V), adj(V), tr(V), sz(V), pr(V), ofl(V), mp(V), ofw(V) {
        iota(all(pr), 0);
    }

    void emplace_edge(int u, int v, li w) {
        adj[u].emplace_back(v, w);
        adj[v].emplace_back(u, w);
    }

    void compile(int _R) {
        R = _R;

        function<void(int, optional<int>)> dfs = [&](int h, optional<int> p) {
            sz[h] = 1;

            for (auto [t, W] : adj[h]) {
                if (p && t == *p) continue;

                dfs(t, h);

                tr[h].emplace_back(t, W);
                if (sz[t] > sz[tr[h][0].first]) swap(tr[h][0], tr[h].back());
                sz[h] += sz[t];
            }

            if (!tr[h].empty()) pr[h] = pr[tr[h][0].first];

            adj[h].clear();
            adj[h].shrink_to_fit();
        };

        dfs(R, nullopt);
    }

    optional<int> solve(int h, li K) {
        optional<int> ret;
        multiset<pair<li, int>> courses;

        for (auto [t, W] : tr[h]) {
            auto sol = solve(t, K);

            if (sol) {
                if (!ret)
                    ret = sol;
                else
                    ret = min(*ret, *sol);
            }

            auto it = mp[pr[t]].find(K - W - ofw[pr[t]]);
            if (it != mp[pr[t]].end()) {
                if (!ret)
                    ret = ofl[pr[t]] + 1 + it->second;
                else
                    ret = min(*ret, ofl[pr[t]] + 1 + it->second);
            }
        }

        for (auto [t, W] : tr[h]) {
            if (pr[h] != pr[t]) {
                auto it = mp[pr[t]].begin();
                while (it != mp[pr[t]].end()) {
                    if (ret && it->second + ofl[pr[t]] + 1 > *ret) {
                        it = mp[pr[t]].erase(it);
                        continue;
                    }

                    ++it;
                }

                for (auto [w, l] : mp[pr[t]])
                    courses.emplace(W + w + ofw[pr[t]], l + ofl[pr[t]] + 1);
            }
        }

        for (auto [t, W] : tr[h]) {
            if (pr[h] != pr[t]) {
                for (auto [w, l] : mp[pr[t]])
                    courses.erase({W + w + ofw[pr[t]], l + ofl[pr[t]] + 1});

                for (auto [w, l] : mp[pr[t]]) {
                    auto remain = K - W - w - ofw[pr[t]];
                    if (remain < 0) break;

                    auto it = courses.lower_bound({remain, -1});
                    if (it != courses.end() && it->first == remain) {
                        if (!ret)
                            ret = l + ofl[pr[t]] + 1 + it->second;
                        else
                            ret = min(*ret, l + ofl[pr[t]] + 1 + it->second);
                    }
                }

                for (auto [w, l] : mp[pr[t]])
                    courses.emplace(W + w + ofw[pr[t]], l + ofl[pr[t]] + 1);
            }
        }

        if (h != pr[h]) {
            auto [t, W] = tr[h][0];

            for (auto [w, l] : courses) {
                auto remain = K - W - w - ofw[pr[t]];

                auto it = mp[pr[t]].find(remain);
                if (it != mp[pr[t]].end()) {
                    if (!ret)
                        ret = l + ofl[pr[t]] + 1 + it->second;
                    else
                        ret = min(*ret, l + ofl[pr[t]] + 1 + it->second);
                }
            }

            ofw[pr[h]] += tr[h][0].second;
            ofl[pr[h]]++;
        }

        for (auto [t, W] : adj[h]) mp[pr[t]].clear();
        for (auto [w, l] : courses)
            mp[pr[h]].emplace_minimal(w - ofw[pr[h]], l - ofl[pr[h]]);
        mp[pr[h]].emplace_minimal(-ofw[pr[h]], -ofl[pr[h]]);

        auto it = mp[pr[h]].upper_bound(K - ofw[pr[h]]);
        mp[pr[h]].erase(it, mp[pr[h]].end());

        return ret;
    }
};

int best_path(int N, int K, int H[][2], int L[]) {
    Tree T(N);
    for (int i = 0; i < N - 1; i++) {
        T.emplace_edge(H[i][0], H[i][1], L[i]);
    }
    T.compile(0);
    auto res = T.solve(0, K);
    return res ? *res : -1;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2396 KB Output is correct
2 Correct 1 ms 2396 KB Output is correct
3 Correct 0 ms 2396 KB Output is correct
4 Correct 0 ms 2396 KB Output is correct
5 Correct 1 ms 2648 KB Output is correct
6 Correct 1 ms 2396 KB Output is correct
7 Correct 0 ms 2396 KB Output is correct
8 Correct 1 ms 2396 KB Output is correct
9 Correct 1 ms 2396 KB Output is correct
10 Correct 1 ms 2396 KB Output is correct
11 Correct 1 ms 2396 KB Output is correct
12 Correct 1 ms 2396 KB Output is correct
13 Correct 1 ms 2396 KB Output is correct
14 Correct 1 ms 2396 KB Output is correct
15 Correct 0 ms 2396 KB Output is correct
16 Correct 1 ms 2392 KB Output is correct
17 Correct 1 ms 2396 KB Output is correct
18 Correct 1 ms 2396 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2396 KB Output is correct
2 Correct 1 ms 2396 KB Output is correct
3 Correct 0 ms 2396 KB Output is correct
4 Correct 0 ms 2396 KB Output is correct
5 Correct 1 ms 2648 KB Output is correct
6 Correct 1 ms 2396 KB Output is correct
7 Correct 0 ms 2396 KB Output is correct
8 Correct 1 ms 2396 KB Output is correct
9 Correct 1 ms 2396 KB Output is correct
10 Correct 1 ms 2396 KB Output is correct
11 Correct 1 ms 2396 KB Output is correct
12 Correct 1 ms 2396 KB Output is correct
13 Correct 1 ms 2396 KB Output is correct
14 Correct 1 ms 2396 KB Output is correct
15 Correct 0 ms 2396 KB Output is correct
16 Correct 1 ms 2392 KB Output is correct
17 Correct 1 ms 2396 KB Output is correct
18 Correct 1 ms 2396 KB Output is correct
19 Correct 1 ms 2396 KB Output is correct
20 Correct 1 ms 2396 KB Output is correct
21 Correct 3 ms 2652 KB Output is correct
22 Correct 1 ms 2652 KB Output is correct
23 Correct 1 ms 2652 KB Output is correct
24 Correct 2 ms 2652 KB Output is correct
25 Correct 2 ms 2844 KB Output is correct
26 Correct 1 ms 2652 KB Output is correct
27 Correct 1 ms 2652 KB Output is correct
28 Correct 2 ms 2652 KB Output is correct
29 Correct 2 ms 2652 KB Output is correct
30 Correct 2 ms 2748 KB Output is correct
31 Correct 3 ms 2652 KB Output is correct
32 Correct 2 ms 3096 KB Output is correct
33 Correct 3 ms 2652 KB Output is correct
34 Correct 1 ms 2652 KB Output is correct
35 Correct 1 ms 2904 KB Output is correct
36 Correct 1 ms 2652 KB Output is correct
37 Correct 1 ms 2652 KB Output is correct
38 Correct 2 ms 2652 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2396 KB Output is correct
2 Correct 1 ms 2396 KB Output is correct
3 Correct 0 ms 2396 KB Output is correct
4 Correct 0 ms 2396 KB Output is correct
5 Correct 1 ms 2648 KB Output is correct
6 Correct 1 ms 2396 KB Output is correct
7 Correct 0 ms 2396 KB Output is correct
8 Correct 1 ms 2396 KB Output is correct
9 Correct 1 ms 2396 KB Output is correct
10 Correct 1 ms 2396 KB Output is correct
11 Correct 1 ms 2396 KB Output is correct
12 Correct 1 ms 2396 KB Output is correct
13 Correct 1 ms 2396 KB Output is correct
14 Correct 1 ms 2396 KB Output is correct
15 Correct 0 ms 2396 KB Output is correct
16 Correct 1 ms 2392 KB Output is correct
17 Correct 1 ms 2396 KB Output is correct
18 Correct 1 ms 2396 KB Output is correct
19 Correct 151 ms 29720 KB Output is correct
20 Correct 157 ms 29736 KB Output is correct
21 Correct 145 ms 29972 KB Output is correct
22 Correct 154 ms 30036 KB Output is correct
23 Correct 96 ms 24912 KB Output is correct
24 Correct 131 ms 28448 KB Output is correct
25 Correct 84 ms 36444 KB Output is correct
26 Correct 62 ms 50512 KB Output is correct
27 Correct 165 ms 39984 KB Output is correct
28 Correct 211 ms 96076 KB Output is correct
29 Correct 198 ms 91728 KB Output is correct
30 Correct 153 ms 39960 KB Output is correct
31 Correct 181 ms 40136 KB Output is correct
32 Correct 233 ms 40016 KB Output is correct
33 Correct 202 ms 38216 KB Output is correct
34 Correct 211 ms 37620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2396 KB Output is correct
2 Correct 1 ms 2396 KB Output is correct
3 Correct 0 ms 2396 KB Output is correct
4 Correct 0 ms 2396 KB Output is correct
5 Correct 1 ms 2648 KB Output is correct
6 Correct 1 ms 2396 KB Output is correct
7 Correct 0 ms 2396 KB Output is correct
8 Correct 1 ms 2396 KB Output is correct
9 Correct 1 ms 2396 KB Output is correct
10 Correct 1 ms 2396 KB Output is correct
11 Correct 1 ms 2396 KB Output is correct
12 Correct 1 ms 2396 KB Output is correct
13 Correct 1 ms 2396 KB Output is correct
14 Correct 1 ms 2396 KB Output is correct
15 Correct 0 ms 2396 KB Output is correct
16 Correct 1 ms 2392 KB Output is correct
17 Correct 1 ms 2396 KB Output is correct
18 Correct 1 ms 2396 KB Output is correct
19 Correct 1 ms 2396 KB Output is correct
20 Correct 1 ms 2396 KB Output is correct
21 Correct 3 ms 2652 KB Output is correct
22 Correct 1 ms 2652 KB Output is correct
23 Correct 1 ms 2652 KB Output is correct
24 Correct 2 ms 2652 KB Output is correct
25 Correct 2 ms 2844 KB Output is correct
26 Correct 1 ms 2652 KB Output is correct
27 Correct 1 ms 2652 KB Output is correct
28 Correct 2 ms 2652 KB Output is correct
29 Correct 2 ms 2652 KB Output is correct
30 Correct 2 ms 2748 KB Output is correct
31 Correct 3 ms 2652 KB Output is correct
32 Correct 2 ms 3096 KB Output is correct
33 Correct 3 ms 2652 KB Output is correct
34 Correct 1 ms 2652 KB Output is correct
35 Correct 1 ms 2904 KB Output is correct
36 Correct 1 ms 2652 KB Output is correct
37 Correct 1 ms 2652 KB Output is correct
38 Correct 2 ms 2652 KB Output is correct
39 Correct 151 ms 29720 KB Output is correct
40 Correct 157 ms 29736 KB Output is correct
41 Correct 145 ms 29972 KB Output is correct
42 Correct 154 ms 30036 KB Output is correct
43 Correct 96 ms 24912 KB Output is correct
44 Correct 131 ms 28448 KB Output is correct
45 Correct 84 ms 36444 KB Output is correct
46 Correct 62 ms 50512 KB Output is correct
47 Correct 165 ms 39984 KB Output is correct
48 Correct 211 ms 96076 KB Output is correct
49 Correct 198 ms 91728 KB Output is correct
50 Correct 153 ms 39960 KB Output is correct
51 Correct 181 ms 40136 KB Output is correct
52 Correct 233 ms 40016 KB Output is correct
53 Correct 202 ms 38216 KB Output is correct
54 Correct 211 ms 37620 KB Output is correct
55 Correct 23 ms 5464 KB Output is correct
56 Correct 11 ms 4696 KB Output is correct
57 Correct 89 ms 27996 KB Output is correct
58 Correct 89 ms 30156 KB Output is correct
59 Correct 85 ms 54744 KB Output is correct
60 Correct 272 ms 105136 KB Output is correct
61 Correct 215 ms 46160 KB Output is correct
62 Correct 167 ms 49332 KB Output is correct
63 Correct 230 ms 49212 KB Output is correct
64 Correct 709 ms 100452 KB Output is correct
65 Correct 250 ms 44344 KB Output is correct
66 Correct 220 ms 85168 KB Output is correct
67 Correct 361 ms 59844 KB Output is correct
68 Correct 344 ms 56564 KB Output is correct
69 Correct 365 ms 56868 KB Output is correct
70 Correct 326 ms 54636 KB Output is correct