Submission #844009

# Submission time Handle Problem Language Result Execution time Memory
844009 2023-09-04T21:52:56 Z cryan Mecho (IOI09_mecho) C++17
91 / 100
1000 ms 8732 KB
// oh, these hills, they burn so bright / oh, these hills, they bring me life
#include "bits/stdc++.h"
using namespace std;

using ll = long long;
#define all(x) begin(x), end(x)
#define rall(x) x.rbegin(), x.rend()
#define sz(x) (int)(x.size())
#define inf 1000000010
#define linf 0x3f3f3f3f3f3f3f3f
#define mp make_pair
#define f first
#define s second
#define pi pair<int, int>
#ifdef LOCAL
#include "/mnt/c/yukon/pp.hpp"
#else
#define endl '\n'
#endif

struct Event {
	int locf, locs;
	int dist;
};
int grid[801][801], dist_bees[801][801];
const int dx[] = {1, 0, -1, 0}, dy[] = {0, 1, 0, -1};
int main() {
	cin.tie(0)->sync_with_stdio(0);

	int n;
	cin >> n;

	int S;
	cin >> S;

	vector<pi> hives;
	pi start, end;

	for (int i = 0; i < n; i++) {
		string st;
		cin >> st;

		for (int j = 0; j < n; j++) {
			if (st[j] == 'T')
				grid[i][j] = -1;
			else if (st[j] != 'D')
				grid[i][j] = 0;
			else
				grid[i][j] = 1, end = {i, j};

			if (st[j] == 'H') {
				hives.emplace_back(i, j);
			} else if (st[j] == 'M')
				start = {i, j};
		}
	}

	// let's get distance from bees first
	queue<Event> bfs;
	memset(dist_bees, 0x3f, sizeof dist_bees);

	for (auto &[i, j] : hives) {
		bfs.push({i, j, 0});
		dist_bees[i][j] = 0;
	}
	while (!bfs.empty()) {
		int i = bfs.front().locf;
		int j = bfs.front().locs;
		int dist = bfs.front().dist;
		bfs.pop();

		if (dist_bees[i][j] < dist)
			continue;

		for (int d = 0; d < 4; d++) {
			int new_i = i + dx[d], new_j = j + dy[d];

			if (new_i >= 0 && new_i < n && new_j >= 0 && new_j < n) {
				if (grid[new_i][new_j] == 0 && dist_bees[new_i][new_j] > dist + 1) {
					dist_bees[new_i][new_j] = dist + 1;
					bfs.push({new_i, new_j, dist + 1});
				}
			}
		}
	}
	// for (int i = 0; i < n; i++) {
	// 	cout << dist_bees[i] << endl;
	// }

	// now mecho's turn
	bfs.push({start.f, start.s, 0});
	// just store distance w/o S factor
	vector<vector<int>> mecho_dist(n, vector<int>(n, -inf));
	mecho_dist[start.f][start.s] = dist_bees[start.f][start.s];

	while (sz(bfs)) {
		int i = bfs.front().locf;
		int j = bfs.front().locs;
		int dist = bfs.front().dist;
		bfs.pop();
		if (mecho_dist[i][j] > dist_bees[i][j] - (dist) / S)
			continue;
		int elapsed = (dist + 1) / S;
		for (int d = 0; d < 4; d++) {
			int ni = i + dx[d], nj = j + dy[d];

			if (ni < 0 || ni >= n || nj < 0 || nj >= n)
				continue;

			// if (ni == 3 && nj == 3) {
			// 	cout << dist + 1 << ' ' << elapsed << ' ' << dist_bees[ni][nj] << endl;
			// }
			int lead = min(mecho_dist[i][j], dist_bees[ni][nj] - elapsed);
			if (grid[ni][nj] != -1 && mecho_dist[ni][nj] < lead && elapsed < dist_bees[ni][nj]) {
				mecho_dist[ni][nj] = lead;
				bfs.push({ni, nj, dist + 1});
			}
		}
	}
	// cout << "________" << endl;
	// for (int i = 0; i < n; i++) {
	// 	cout << mecho_dist[i] << endl;
	// }
	// cout << "________" << endl;
	// for (int i = 0; i < n; i++) {
	// 	cout << mecho_lead[i] << endl;
	// }

	int ans = -inf;
	for (int d = 0; d < 4; d++) {
		int ni = end.f + dx[d], nj = end.s + dy[d];

		if (ni < 0 || ni >= n || nj < 0 || nj >= n)
			continue;
		if (grid[ni][nj] == -1 || mecho_dist[ni][nj] == inf)
			continue;

		ans = max(ans, mecho_dist[ni][nj] - 1);
		// int elapsed = (mecho_dist[ni][nj] + S) / S;
		// ans = max(ans, dist_bees[ni][nj] - elapsed);
	}
	if (ans < 0) {
		cout << -1 << endl;
	} else {
		cout << ans << endl;
	}
}

// don't get stuck on one approach
// question bounds
// flesh out your approach before implementing o.o
// math it out
// ok well X is always possible, how about X + 1 (etc.)
# Verdict Execution time Memory Grader output
1 Correct 1 ms 4700 KB Output is correct
2 Correct 1 ms 4700 KB Output is correct
3 Correct 1 ms 4700 KB Output is correct
4 Correct 1 ms 4700 KB Output is correct
5 Correct 1 ms 4700 KB Output is correct
6 Correct 1 ms 4700 KB Output is correct
7 Correct 35 ms 8080 KB Output is correct
8 Correct 1 ms 4700 KB Output is correct
9 Correct 1 ms 4700 KB Output is correct
10 Correct 1 ms 4700 KB Output is correct
11 Correct 1 ms 4696 KB Output is correct
12 Correct 1 ms 4700 KB Output is correct
13 Correct 1 ms 4700 KB Output is correct
14 Correct 1 ms 4696 KB Output is correct
15 Correct 1 ms 4700 KB Output is correct
16 Correct 1 ms 4700 KB Output is correct
17 Correct 1 ms 4700 KB Output is correct
18 Correct 1 ms 4700 KB Output is correct
19 Correct 1 ms 4700 KB Output is correct
20 Correct 1 ms 4700 KB Output is correct
21 Correct 1 ms 4700 KB Output is correct
22 Correct 1 ms 4700 KB Output is correct
23 Correct 1 ms 4700 KB Output is correct
24 Correct 1 ms 4708 KB Output is correct
25 Correct 1 ms 4700 KB Output is correct
26 Correct 1 ms 4700 KB Output is correct
27 Correct 1 ms 4700 KB Output is correct
28 Correct 1 ms 4700 KB Output is correct
29 Correct 1 ms 4700 KB Output is correct
30 Correct 1 ms 4700 KB Output is correct
31 Correct 1 ms 4700 KB Output is correct
32 Correct 1 ms 4700 KB Output is correct
33 Correct 3 ms 5212 KB Output is correct
34 Correct 3 ms 5212 KB Output is correct
35 Correct 127 ms 5348 KB Output is correct
36 Correct 4 ms 5212 KB Output is correct
37 Correct 5 ms 5212 KB Output is correct
38 Correct 184 ms 5456 KB Output is correct
39 Correct 5 ms 5464 KB Output is correct
40 Correct 5 ms 5720 KB Output is correct
41 Correct 269 ms 5756 KB Output is correct
42 Correct 5 ms 5720 KB Output is correct
43 Correct 6 ms 5724 KB Output is correct
44 Correct 371 ms 5812 KB Output is correct
45 Correct 6 ms 5720 KB Output is correct
46 Correct 9 ms 5964 KB Output is correct
47 Correct 516 ms 6488 KB Output is correct
48 Correct 7 ms 6236 KB Output is correct
49 Correct 9 ms 6232 KB Output is correct
50 Correct 630 ms 6656 KB Output is correct
51 Correct 9 ms 6492 KB Output is correct
52 Correct 10 ms 6492 KB Output is correct
53 Correct 821 ms 7436 KB Output is correct
54 Correct 10 ms 7004 KB Output is correct
55 Correct 12 ms 7000 KB Output is correct
56 Execution timed out 1040 ms 8004 KB Time limit exceeded
57 Correct 11 ms 7512 KB Output is correct
58 Correct 15 ms 7588 KB Output is correct
59 Execution timed out 1093 ms 7940 KB Time limit exceeded
60 Correct 13 ms 8028 KB Output is correct
61 Correct 16 ms 8028 KB Output is correct
62 Execution timed out 1090 ms 8732 KB Time limit exceeded
63 Correct 33 ms 8028 KB Output is correct
64 Correct 36 ms 8028 KB Output is correct
65 Correct 34 ms 8024 KB Output is correct
66 Correct 31 ms 8028 KB Output is correct
67 Correct 28 ms 8028 KB Output is correct
68 Correct 24 ms 8028 KB Output is correct
69 Correct 26 ms 8020 KB Output is correct
70 Correct 25 ms 8016 KB Output is correct
71 Correct 23 ms 8024 KB Output is correct
72 Correct 28 ms 7856 KB Output is correct
73 Correct 21 ms 8024 KB Output is correct
74 Correct 49 ms 8028 KB Output is correct
75 Correct 22 ms 8028 KB Output is correct
76 Correct 23 ms 8028 KB Output is correct
77 Correct 23 ms 8028 KB Output is correct
78 Correct 24 ms 8088 KB Output is correct
79 Correct 265 ms 8216 KB Output is correct
80 Correct 45 ms 8272 KB Output is correct
81 Correct 25 ms 8092 KB Output is correct
82 Correct 76 ms 8140 KB Output is correct
83 Correct 27 ms 8024 KB Output is correct
84 Correct 79 ms 8080 KB Output is correct
85 Correct 122 ms 8024 KB Output is correct
86 Correct 159 ms 8024 KB Output is correct
87 Correct 40 ms 8028 KB Output is correct
88 Correct 95 ms 8020 KB Output is correct
89 Correct 321 ms 8528 KB Output is correct
90 Correct 33 ms 8052 KB Output is correct
91 Correct 48 ms 8028 KB Output is correct
92 Correct 31 ms 8028 KB Output is correct