Submission #84189

# Submission time Handle Problem Language Result Execution time Memory
84189 2018-11-13T21:05:07 Z radoslav11 New Home (APIO18_new_home) C++14
100 / 100
4417 ms 837060 KB
/*
   We will use sweep line to solve the problem. We split the stores into 2 queries: 
   1) Add store i at time a[i]
   2) Remove store i at time b[i] + 1
   We will also have queries in the sweep line. Everything will be sorted by time in increasing order.

   Now to handle queries we will maintain K sets - the available positions of j-type stores. Then if A and B are two consecutive stores, the closest elements to all positions in [A; B] are A or B.
   Then let's have a two segment trees wtih sets - one for closest elements to the left and one for closest elements to the right. Now addition of store with type X will be done like that:

   1) Let A <= X <= B and A and B are the closest stores of the same type. 
   2) We remove the interval [A; B] from the DS.
   3) We add the intervals [A; X] and [X; B].

   Adding or removing an interval is done by finding the middle position and then concidering the two ranges - [L; Mid] and [Mid + 1; R].

   The complexity will be O(N * log N * log N).

   As sets are slow, we will compress the input in each segment tree node beforehand and then use priority queue instead of sets.

   Unfortunately the above data structure was too slow. So my second idea is to change the data structure to two simple treaps and do binary search on them. 
   The complexity will be O(N log N) this way. 

   Again unfortunately the treap solution was too slow (it got 47). So the third idea is to make the data structure offline. Then the treap can be replaced with segment tree.
   */

#include <bits/stdc++.h>
#define endl '\n'

//#pragma GCC optimize ("O3")
//#pragma GCC target ("sse4")

#define SZ(x) ((int)x.size())
#define ALL(V) V.begin(), V.end()
#define L_B lower_bound
#define U_B upper_bound

using namespace std;
template<class T, class T2> inline int chkmax(T &x, const T2 &y) { return x < y ? x = y, 1 : 0; }
template<class T, class T2> inline int chkmin(T &x, const T2 &y) { return x > y ? x = y, 1 : 0; }
const int MAXN = (1 << 21);
const int inf = (int)1e9 + 42;

vector<pair<int, int> > Li, Li2;

struct segment_tree_L
{
	vector<pair<int, int> > a;

	struct node
	{
		int mx;
		node() { mx = -inf; }
		node(int val) { mx = val; }
	};

	node temp, broken;

	node merge(node l, node r)
	{
		temp.mx = max(l.mx, r.mx);
		return temp;
	}

	int bound_L[4 * MAXN], bound_R[4 * MAXN];

	node tr[4 * MAXN];
	int CNT[MAXN], lf[MAXN];

	void init(int l, int r, int idx)
	{
		bound_L[idx] = l;
		bound_R[idx] = r;
		if(l == r)
		{
			CNT[l] = 0;
			lf[l] = idx;
			tr[idx] = node();
			return;
		}

		int mid = (l + r) >> 1;
		init(l, mid, 2 * idx + 1);
		init(mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void change_cnt(int pos, int d)
	{
		CNT[pos] += d;
		if(CNT[pos] == 0 || CNT[pos] == d)
		{
			int idx = lf[pos];
			tr[idx].mx = CNT[pos] ? a[pos].second : -inf;

			while(idx)
			{
				idx = (idx - 1) >> 1;
				tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
			}
		}
	}

	void add(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]++;
			tr[idx].mx = CNT[l] ? a[l].second : -inf;
			return;
		}

		int mid = (l + r) >> 1;
		add(pos, l, mid, 2 * idx + 1);
		add(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void rem(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]--;
			tr[idx].mx = CNT[l] ? a[l].second : -inf;
			return;
		}

		int mid = (l + r) >> 1;
		rem(pos, l, mid, 2 * idx + 1);
		rem(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void get_nodes(int qL, int qR, int l, int r, int idx, vector<int> &li)
	{
		if(l > qR || r < qL) return;
		if(qL <= l && r <= qR)
		{
			li.push_back(idx);
			return;
		}

		int mid = (l + r) >> 1;
		get_nodes(qL, qR, l, mid, 2 * idx + 1, li);
		get_nodes(qL, qR, mid + 1, r, 2 * idx + 2, li);
	}

	int get_right(int l, int r, int idx, int X)
	{
		if(l == r) return l;
		int mid = (l + r) >> 1;
		if(tr[2 * idx + 1].mx >= X) return get_right(l, mid, 2 * idx + 1, X);
		else return get_right(mid + 1, r, 2 * idx + 2, X);
	}

	int N;

	void init()
	{
		N = SZ(Li);
		a = Li;
		init(0, N - 1, 0);
	}

	void add_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(l, r)) - a.begin();
		change_cnt(pos, 1);
	}

	void rem_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(l, r)) - a.begin();
		change_cnt(pos, -1);
	}

	int query(int x)
	{
		return x - a[get_right(0, N - 1, 0, x)].first;
	}

} L;

struct segment_tree_R
{
	vector<pair<int, int> > a;

	struct node
	{
		int mn;
		node() { mn = inf; }
		node(int val) { mn = val; }
	};

	node temp, broken;

	node merge(node l, node r)
	{
		temp.mn = min(l.mn, r.mn);
		return temp;
	}

	int bound_L[4 * MAXN], bound_R[4 * MAXN];

	node tr[4 * MAXN];
	int CNT[MAXN], lf[MAXN];

	void init(int l, int r, int idx)
	{
		bound_L[idx] = l;
		bound_R[idx] = r;
		if(l == r)
		{
			CNT[l] = 0;
			lf[l] = idx;
			tr[idx] = node();
			return;
		}

		int mid = (l + r) >> 1;
		init(l, mid, 2 * idx + 1);
		init(mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void change_cnt(int pos, int d)
	{
		CNT[pos] += d;
		if(CNT[pos] == 0 || CNT[pos] == d)
		{
			int idx = lf[pos];
			tr[idx].mn = CNT[pos] ? a[pos].second : inf;

			while(idx)
			{
				idx = (idx - 1) >> 1;
				tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
			}
		}
	}

	void add(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]++;
			tr[idx].mn = CNT[l] ? a[l].second : inf;
			return;
		}

		int mid = (l + r) >> 1;
		add(pos, l, mid, 2 * idx + 1);
		add(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void rem(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]--;
			tr[idx].mn = CNT[l] ? a[l].second : inf;
			return;
		}

		int mid = (l + r) >> 1;
		rem(pos, l, mid, 2 * idx + 1);
		rem(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void get_nodes(int qL, int qR, int l, int r, int idx, vector<int> &li)
	{
		if(l > qR || r < qL) return;
		if(qL <= l && r <= qR)
		{
			li.push_back(idx);
			return;
		}

		int mid = (l + r) >> 1;
		get_nodes(qL, qR, l, mid, 2 * idx + 1, li);
		get_nodes(qL, qR, mid + 1, r, 2 * idx + 2, li);
	}

	int get_left(int l, int r, int idx, int X)
	{
		if(l == r) return l;
		int mid = (l + r) >> 1;
		if(tr[2 * idx + 2].mn <= X) return get_left(mid + 1, r, 2 * idx + 2, X);
		else return get_left(l, mid, 2 * idx + 1, X);
	}

	int N;

	void init()
	{
		N = SZ(Li);
		a = Li2;
		init(0, N - 1, 0);
	}

	void add_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(r, l)) - a.begin();
		change_cnt(pos, 1);
	}

	void rem_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(r, l)) - a.begin();
		change_cnt(pos, -1);
	}

	int query(int x)
	{
		return a[get_left(0, N - 1, 0, x)].first - x;
	}

} R;

int read_int();

int n, k, q;

struct event
{
	int type;
	int T, x, tp, idx;

	event() { type = tp = T = x = 0; idx = -1; }
	event(int t, int Tm, int X, int i, int pp = -1)
	{
		type = t;
		T = Tm;
		x = X;
		idx = i;
		tp = pp;
	}
};

bool cmp(event a, event b) 
{ 
	if(a.T != b.T) return a.T < b.T; 
	return a.type < b.type;
}

vector<event> Ev;
int answer[MAXN];

void read()
{
	n = read_int();
	k = read_int();
	q = read_int();

	for(int i = 0; i < n; i++)
	{
		int x, t, a, b;
		x = read_int();
		t = read_int();
		a = read_int();
		b = read_int();

		Ev.push_back(event(0, a, x, i, t));
		Ev.push_back(event(1, b + 1, x, i, t));
	}

	for(int i = 0; i < q; i++)
	{
		int x, t;
		x = read_int();
		t = read_int();
		Ev.push_back(event(2, t, x, i));
	}
}

set<pair<int, int> > ST[MAXN];

void add_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) L.add_interval(l, mid);
	if(mid + 1 <= r) R.add_interval(mid + 1, r);
}

void rem_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) L.rem_interval(l, mid);
	if(mid + 1 <= r) R.rem_interval(mid + 1, r);
}

int query(int x) { return max(L.query(x), R.query(x)); }

void add(int y, int x, int i)
{
	auto it = ST[y].insert({x, i}).first;
	auto aft = next(it);
	auto bef = prev(it);

	rem_interval(bef->first, aft->first);
	add_interval(bef->first, x);
	add_interval(x, aft->first);
}

void rem(int y, int x, int i)
{
	auto aft = ST[y].erase(ST[y].find({x, i}));
	auto bef = prev(aft);

	rem_interval(bef->first, x);
	rem_interval(x, aft->first);
	add_interval(bef->first, aft->first);
}

void prep_add_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) Li.push_back({l, mid});
	if(mid + 1 <= r) Li2.push_back({r, mid + 1});
}

void prep_add(int y, int x, int i)
{
	auto it = ST[y].insert({x, i}).first;
	auto aft = next(it);
	auto bef = prev(it);

	prep_add_interval(bef->first, x);
	prep_add_interval(x, aft->first);
}

void prep_rem(int y, int x, int i)
{
	auto aft = ST[y].erase(ST[y].find({x, i}));
	auto bef = prev(aft);

	prep_add_interval(bef->first, aft->first);
}

void solve()
{
	for(int i = 1; i <= k; i++)
		ST[i].insert({-inf, -1}), ST[i].insert({inf, -1});

	prep_add_interval(-inf, inf);

	sort(ALL(Ev), cmp);

	for(auto it: Ev)
		if(it.type == 0)
			prep_add(it.tp, it.x, it.idx);
		else if(it.type == 1)
			prep_rem(it.tp, it.x, it.idx);

	sort(ALL(Li));
	Li.erase(unique(ALL(Li)), Li.end());

	sort(ALL(Li2));
	Li2.erase(unique(ALL(Li2)), Li2.end());

	L.init();
	R.init();

	for(int i = 0; i < k; i++)
		add_interval(-inf, inf);

	for(auto it: Ev)
		if(it.type == 0)
			add(it.tp, it.x, it.idx);
		else if(it.type == 1)
			rem(it.tp, it.x, it.idx);
		else 
			answer[it.idx] = query(it.x);

	for(int i = 0; i < q; i++)
		if(answer[i] < (int)2e8) cout << answer[i] << endl;
		else cout << -1 << endl;
}

int main()
{
	ios_base::sync_with_stdio(false);
	cin.tie(NULL);

	read();
	solve();
	return 0;
}

const int maxl = 100000;
char buff[maxl];
int ret_int, pos_buff = 0;

void next_char() { if(++pos_buff == maxl) fread(buff, 1, maxl, stdin), pos_buff = 0; }

int read_int()
{
	ret_int = 0;
	for(; buff[pos_buff] < '0' || buff[pos_buff] > '9'; next_char());
	for(; buff[pos_buff] >= '0' && buff[pos_buff] <= '9'; next_char())
		ret_int = ret_int * 10 + buff[pos_buff] - '0';
	return ret_int;
}

Compilation message

new_home.cpp: In function 'void next_char()':
new_home.cpp:513:70: warning: ignoring return value of 'size_t fread(void*, size_t, size_t, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void next_char() { if(++pos_buff == maxl) fread(buff, 1, maxl, stdin), pos_buff = 0; }
                                           ~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 146 ms 164604 KB Output is correct
2 Correct 148 ms 164604 KB Output is correct
3 Correct 146 ms 164676 KB Output is correct
4 Correct 145 ms 164696 KB Output is correct
5 Correct 147 ms 164816 KB Output is correct
6 Correct 146 ms 164964 KB Output is correct
7 Correct 146 ms 164964 KB Output is correct
8 Correct 146 ms 164996 KB Output is correct
9 Correct 146 ms 164996 KB Output is correct
10 Correct 145 ms 164996 KB Output is correct
11 Correct 145 ms 164996 KB Output is correct
12 Correct 148 ms 164996 KB Output is correct
13 Correct 147 ms 164996 KB Output is correct
14 Correct 142 ms 164996 KB Output is correct
15 Correct 159 ms 165016 KB Output is correct
16 Correct 139 ms 165016 KB Output is correct
17 Correct 144 ms 165036 KB Output is correct
18 Correct 144 ms 165060 KB Output is correct
19 Correct 144 ms 165060 KB Output is correct
20 Correct 140 ms 165060 KB Output is correct
21 Correct 146 ms 165060 KB Output is correct
22 Correct 141 ms 165060 KB Output is correct
23 Correct 144 ms 165060 KB Output is correct
24 Correct 146 ms 165076 KB Output is correct
25 Correct 145 ms 165076 KB Output is correct
26 Correct 145 ms 165076 KB Output is correct
27 Correct 141 ms 165076 KB Output is correct
28 Correct 143 ms 165076 KB Output is correct
29 Correct 152 ms 165076 KB Output is correct
30 Correct 143 ms 165076 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 146 ms 164604 KB Output is correct
2 Correct 148 ms 164604 KB Output is correct
3 Correct 146 ms 164676 KB Output is correct
4 Correct 145 ms 164696 KB Output is correct
5 Correct 147 ms 164816 KB Output is correct
6 Correct 146 ms 164964 KB Output is correct
7 Correct 146 ms 164964 KB Output is correct
8 Correct 146 ms 164996 KB Output is correct
9 Correct 146 ms 164996 KB Output is correct
10 Correct 145 ms 164996 KB Output is correct
11 Correct 145 ms 164996 KB Output is correct
12 Correct 148 ms 164996 KB Output is correct
13 Correct 147 ms 164996 KB Output is correct
14 Correct 142 ms 164996 KB Output is correct
15 Correct 159 ms 165016 KB Output is correct
16 Correct 139 ms 165016 KB Output is correct
17 Correct 144 ms 165036 KB Output is correct
18 Correct 144 ms 165060 KB Output is correct
19 Correct 144 ms 165060 KB Output is correct
20 Correct 140 ms 165060 KB Output is correct
21 Correct 146 ms 165060 KB Output is correct
22 Correct 141 ms 165060 KB Output is correct
23 Correct 144 ms 165060 KB Output is correct
24 Correct 146 ms 165076 KB Output is correct
25 Correct 145 ms 165076 KB Output is correct
26 Correct 145 ms 165076 KB Output is correct
27 Correct 141 ms 165076 KB Output is correct
28 Correct 143 ms 165076 KB Output is correct
29 Correct 152 ms 165076 KB Output is correct
30 Correct 143 ms 165076 KB Output is correct
31 Correct 741 ms 188332 KB Output is correct
32 Correct 291 ms 188332 KB Output is correct
33 Correct 667 ms 188332 KB Output is correct
34 Correct 629 ms 188332 KB Output is correct
35 Correct 701 ms 188420 KB Output is correct
36 Correct 691 ms 188420 KB Output is correct
37 Correct 514 ms 188420 KB Output is correct
38 Correct 541 ms 188420 KB Output is correct
39 Correct 468 ms 188420 KB Output is correct
40 Correct 471 ms 188420 KB Output is correct
41 Correct 628 ms 188420 KB Output is correct
42 Correct 582 ms 188420 KB Output is correct
43 Correct 221 ms 188420 KB Output is correct
44 Correct 593 ms 188420 KB Output is correct
45 Correct 572 ms 188420 KB Output is correct
46 Correct 527 ms 188420 KB Output is correct
47 Correct 371 ms 188420 KB Output is correct
48 Correct 375 ms 188420 KB Output is correct
49 Correct 399 ms 188420 KB Output is correct
50 Correct 435 ms 188420 KB Output is correct
51 Correct 415 ms 188420 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3733 ms 275016 KB Output is correct
2 Correct 3890 ms 275016 KB Output is correct
3 Correct 3114 ms 294588 KB Output is correct
4 Correct 3684 ms 294588 KB Output is correct
5 Correct 3751 ms 294588 KB Output is correct
6 Correct 3819 ms 294588 KB Output is correct
7 Correct 2703 ms 294648 KB Output is correct
8 Correct 2828 ms 294648 KB Output is correct
9 Correct 2702 ms 294648 KB Output is correct
10 Correct 2989 ms 294648 KB Output is correct
11 Correct 1798 ms 294648 KB Output is correct
12 Correct 1887 ms 294648 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3954 ms 294648 KB Output is correct
2 Correct 1089 ms 294648 KB Output is correct
3 Correct 4417 ms 294648 KB Output is correct
4 Correct 3177 ms 306408 KB Output is correct
5 Correct 3920 ms 306408 KB Output is correct
6 Correct 3714 ms 318504 KB Output is correct
7 Correct 3928 ms 325444 KB Output is correct
8 Correct 4072 ms 337980 KB Output is correct
9 Correct 3139 ms 372468 KB Output is correct
10 Correct 3266 ms 372468 KB Output is correct
11 Correct 3287 ms 378944 KB Output is correct
12 Correct 3596 ms 390600 KB Output is correct
13 Correct 1682 ms 399936 KB Output is correct
14 Correct 1618 ms 410672 KB Output is correct
15 Correct 1970 ms 424848 KB Output is correct
16 Correct 2125 ms 438816 KB Output is correct
17 Correct 2106 ms 449048 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 146 ms 164604 KB Output is correct
2 Correct 148 ms 164604 KB Output is correct
3 Correct 146 ms 164676 KB Output is correct
4 Correct 145 ms 164696 KB Output is correct
5 Correct 147 ms 164816 KB Output is correct
6 Correct 146 ms 164964 KB Output is correct
7 Correct 146 ms 164964 KB Output is correct
8 Correct 146 ms 164996 KB Output is correct
9 Correct 146 ms 164996 KB Output is correct
10 Correct 145 ms 164996 KB Output is correct
11 Correct 145 ms 164996 KB Output is correct
12 Correct 148 ms 164996 KB Output is correct
13 Correct 147 ms 164996 KB Output is correct
14 Correct 142 ms 164996 KB Output is correct
15 Correct 159 ms 165016 KB Output is correct
16 Correct 139 ms 165016 KB Output is correct
17 Correct 144 ms 165036 KB Output is correct
18 Correct 144 ms 165060 KB Output is correct
19 Correct 144 ms 165060 KB Output is correct
20 Correct 140 ms 165060 KB Output is correct
21 Correct 146 ms 165060 KB Output is correct
22 Correct 141 ms 165060 KB Output is correct
23 Correct 144 ms 165060 KB Output is correct
24 Correct 146 ms 165076 KB Output is correct
25 Correct 145 ms 165076 KB Output is correct
26 Correct 145 ms 165076 KB Output is correct
27 Correct 141 ms 165076 KB Output is correct
28 Correct 143 ms 165076 KB Output is correct
29 Correct 152 ms 165076 KB Output is correct
30 Correct 143 ms 165076 KB Output is correct
31 Correct 741 ms 188332 KB Output is correct
32 Correct 291 ms 188332 KB Output is correct
33 Correct 667 ms 188332 KB Output is correct
34 Correct 629 ms 188332 KB Output is correct
35 Correct 701 ms 188420 KB Output is correct
36 Correct 691 ms 188420 KB Output is correct
37 Correct 514 ms 188420 KB Output is correct
38 Correct 541 ms 188420 KB Output is correct
39 Correct 468 ms 188420 KB Output is correct
40 Correct 471 ms 188420 KB Output is correct
41 Correct 628 ms 188420 KB Output is correct
42 Correct 582 ms 188420 KB Output is correct
43 Correct 221 ms 188420 KB Output is correct
44 Correct 593 ms 188420 KB Output is correct
45 Correct 572 ms 188420 KB Output is correct
46 Correct 527 ms 188420 KB Output is correct
47 Correct 371 ms 188420 KB Output is correct
48 Correct 375 ms 188420 KB Output is correct
49 Correct 399 ms 188420 KB Output is correct
50 Correct 435 ms 188420 KB Output is correct
51 Correct 415 ms 188420 KB Output is correct
52 Correct 556 ms 449048 KB Output is correct
53 Correct 493 ms 449048 KB Output is correct
54 Correct 600 ms 449048 KB Output is correct
55 Correct 554 ms 449048 KB Output is correct
56 Correct 512 ms 449048 KB Output is correct
57 Correct 590 ms 449048 KB Output is correct
58 Correct 546 ms 449048 KB Output is correct
59 Correct 550 ms 449048 KB Output is correct
60 Correct 565 ms 449048 KB Output is correct
61 Correct 227 ms 449048 KB Output is correct
62 Correct 541 ms 449048 KB Output is correct
63 Correct 609 ms 449048 KB Output is correct
64 Correct 563 ms 449048 KB Output is correct
65 Correct 570 ms 449048 KB Output is correct
66 Correct 575 ms 449048 KB Output is correct
67 Correct 298 ms 449048 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 146 ms 164604 KB Output is correct
2 Correct 148 ms 164604 KB Output is correct
3 Correct 146 ms 164676 KB Output is correct
4 Correct 145 ms 164696 KB Output is correct
5 Correct 147 ms 164816 KB Output is correct
6 Correct 146 ms 164964 KB Output is correct
7 Correct 146 ms 164964 KB Output is correct
8 Correct 146 ms 164996 KB Output is correct
9 Correct 146 ms 164996 KB Output is correct
10 Correct 145 ms 164996 KB Output is correct
11 Correct 145 ms 164996 KB Output is correct
12 Correct 148 ms 164996 KB Output is correct
13 Correct 147 ms 164996 KB Output is correct
14 Correct 142 ms 164996 KB Output is correct
15 Correct 159 ms 165016 KB Output is correct
16 Correct 139 ms 165016 KB Output is correct
17 Correct 144 ms 165036 KB Output is correct
18 Correct 144 ms 165060 KB Output is correct
19 Correct 144 ms 165060 KB Output is correct
20 Correct 140 ms 165060 KB Output is correct
21 Correct 146 ms 165060 KB Output is correct
22 Correct 141 ms 165060 KB Output is correct
23 Correct 144 ms 165060 KB Output is correct
24 Correct 146 ms 165076 KB Output is correct
25 Correct 145 ms 165076 KB Output is correct
26 Correct 145 ms 165076 KB Output is correct
27 Correct 141 ms 165076 KB Output is correct
28 Correct 143 ms 165076 KB Output is correct
29 Correct 152 ms 165076 KB Output is correct
30 Correct 143 ms 165076 KB Output is correct
31 Correct 741 ms 188332 KB Output is correct
32 Correct 291 ms 188332 KB Output is correct
33 Correct 667 ms 188332 KB Output is correct
34 Correct 629 ms 188332 KB Output is correct
35 Correct 701 ms 188420 KB Output is correct
36 Correct 691 ms 188420 KB Output is correct
37 Correct 514 ms 188420 KB Output is correct
38 Correct 541 ms 188420 KB Output is correct
39 Correct 468 ms 188420 KB Output is correct
40 Correct 471 ms 188420 KB Output is correct
41 Correct 628 ms 188420 KB Output is correct
42 Correct 582 ms 188420 KB Output is correct
43 Correct 221 ms 188420 KB Output is correct
44 Correct 593 ms 188420 KB Output is correct
45 Correct 572 ms 188420 KB Output is correct
46 Correct 527 ms 188420 KB Output is correct
47 Correct 371 ms 188420 KB Output is correct
48 Correct 375 ms 188420 KB Output is correct
49 Correct 399 ms 188420 KB Output is correct
50 Correct 435 ms 188420 KB Output is correct
51 Correct 415 ms 188420 KB Output is correct
52 Correct 3733 ms 275016 KB Output is correct
53 Correct 3890 ms 275016 KB Output is correct
54 Correct 3114 ms 294588 KB Output is correct
55 Correct 3684 ms 294588 KB Output is correct
56 Correct 3751 ms 294588 KB Output is correct
57 Correct 3819 ms 294588 KB Output is correct
58 Correct 2703 ms 294648 KB Output is correct
59 Correct 2828 ms 294648 KB Output is correct
60 Correct 2702 ms 294648 KB Output is correct
61 Correct 2989 ms 294648 KB Output is correct
62 Correct 1798 ms 294648 KB Output is correct
63 Correct 1887 ms 294648 KB Output is correct
64 Correct 3954 ms 294648 KB Output is correct
65 Correct 1089 ms 294648 KB Output is correct
66 Correct 4417 ms 294648 KB Output is correct
67 Correct 3177 ms 306408 KB Output is correct
68 Correct 3920 ms 306408 KB Output is correct
69 Correct 3714 ms 318504 KB Output is correct
70 Correct 3928 ms 325444 KB Output is correct
71 Correct 4072 ms 337980 KB Output is correct
72 Correct 3139 ms 372468 KB Output is correct
73 Correct 3266 ms 372468 KB Output is correct
74 Correct 3287 ms 378944 KB Output is correct
75 Correct 3596 ms 390600 KB Output is correct
76 Correct 1682 ms 399936 KB Output is correct
77 Correct 1618 ms 410672 KB Output is correct
78 Correct 1970 ms 424848 KB Output is correct
79 Correct 2125 ms 438816 KB Output is correct
80 Correct 2106 ms 449048 KB Output is correct
81 Correct 556 ms 449048 KB Output is correct
82 Correct 493 ms 449048 KB Output is correct
83 Correct 600 ms 449048 KB Output is correct
84 Correct 554 ms 449048 KB Output is correct
85 Correct 512 ms 449048 KB Output is correct
86 Correct 590 ms 449048 KB Output is correct
87 Correct 546 ms 449048 KB Output is correct
88 Correct 550 ms 449048 KB Output is correct
89 Correct 565 ms 449048 KB Output is correct
90 Correct 227 ms 449048 KB Output is correct
91 Correct 541 ms 449048 KB Output is correct
92 Correct 609 ms 449048 KB Output is correct
93 Correct 563 ms 449048 KB Output is correct
94 Correct 570 ms 449048 KB Output is correct
95 Correct 575 ms 449048 KB Output is correct
96 Correct 298 ms 449048 KB Output is correct
97 Correct 3240 ms 486440 KB Output is correct
98 Correct 973 ms 486440 KB Output is correct
99 Correct 3609 ms 486440 KB Output is correct
100 Correct 3083 ms 513672 KB Output is correct
101 Correct 3761 ms 520672 KB Output is correct
102 Correct 4049 ms 529740 KB Output is correct
103 Correct 2767 ms 536132 KB Output is correct
104 Correct 2584 ms 549076 KB Output is correct
105 Correct 2005 ms 562060 KB Output is correct
106 Correct 2113 ms 574380 KB Output is correct
107 Correct 3122 ms 601504 KB Output is correct
108 Correct 3146 ms 615296 KB Output is correct
109 Correct 3157 ms 622112 KB Output is correct
110 Correct 3165 ms 637180 KB Output is correct
111 Correct 3271 ms 655288 KB Output is correct
112 Correct 3152 ms 663292 KB Output is correct
113 Correct 655 ms 663292 KB Output is correct
114 Correct 3330 ms 710460 KB Output is correct
115 Correct 3857 ms 714248 KB Output is correct
116 Correct 3765 ms 724092 KB Output is correct
117 Correct 3773 ms 735376 KB Output is correct
118 Correct 3460 ms 745208 KB Output is correct
119 Correct 1063 ms 745208 KB Output is correct
120 Correct 1239 ms 750960 KB Output is correct
121 Correct 1451 ms 773068 KB Output is correct
122 Correct 1416 ms 786484 KB Output is correct
123 Correct 1636 ms 796928 KB Output is correct
124 Correct 1871 ms 814044 KB Output is correct
125 Correct 1800 ms 824180 KB Output is correct
126 Correct 1861 ms 837060 KB Output is correct