Submission #84185

# Submission time Handle Problem Language Result Execution time Memory
84185 2018-11-13T21:01:05 Z radoslav11 New Home (APIO18_new_home) C++14
57 / 100
5000 ms 294580 KB
/*
   We will use sweep line to solve the problem. We split the stores into 2 queries: 
   1) Add store i at time a[i]
   2) Remove store i at time b[i] + 1
   We will also have queries in the sweep line. Everything will be sorted by time in increasing order.

   Now to handle queries we will maintain K sets - the available positions of j-type stores. Then if A and B are two consecutive stores, the closest elements to all positions in [A; B] are A or B.
   Then let's have a two segment trees wtih sets - one for closest elements to the left and one for closest elements to the right. Now addition of store with type X will be done like that:

   1) Let A <= X <= B and A and B are the closest stores of the same type. 
   2) We remove the interval [A; B] from the DS.
   3) We add the intervals [A; X] and [X; B].

   Adding or removing an interval is done by finding the middle position and then concidering the two ranges - [L; Mid] and [Mid + 1; R].

   The complexity will be O(N * log N * log N).

   As sets are slow, we will compress the input in each segment tree node beforehand and then use priority queue instead of sets.

   Unfortunately the above data structure was too slow. So my second idea is to change the data structure to two simple treaps and do binary search on them. 
   The complexity will be O(N log N) this way. 

   Again unfortunately the treap solution was too slow (it got 47). So the third idea is to make the data structure offline. Then the treap can be replaced with segment tree.
   */

#include <bits/stdc++.h>
#define endl '\n'

//#pragma GCC optimize ("O3")
//#pragma GCC target ("sse4")

#define SZ(x) ((int)x.size())
#define ALL(V) V.begin(), V.end()
#define L_B lower_bound
#define U_B upper_bound

using namespace std;
template<class T, class T2> inline int chkmax(T &x, const T2 &y) { return x < y ? x = y, 1 : 0; }
template<class T, class T2> inline int chkmin(T &x, const T2 &y) { return x > y ? x = y, 1 : 0; }
const int MAXN = (1 << 21);
const int inf = (int)1e9 + 42;

vector<pair<int, int> > Li, Li2;

struct segment_tree_L
{
	vector<pair<int, int> > a;

	struct node
	{
		int mx;
		node() { mx = -inf; }
		node(int val) { mx = val; }
	};

	node temp, broken;

	node merge(node l, node r)
	{
		temp.mx = max(l.mx, r.mx);
		return temp;
	}

	int bound_L[4 * MAXN], bound_R[4 * MAXN];

	node tr[4 * MAXN];
	int CNT[MAXN], lf[MAXN];

	void init(int l, int r, int idx)
	{
		bound_L[idx] = l;
		bound_R[idx] = r;
		if(l == r)
		{
			CNT[l] = 0;
			lf[l] = idx;
			tr[idx] = node();
			return;
		}

		int mid = (l + r) >> 1;
		init(l, mid, 2 * idx + 1);
		init(mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void change_cnt(int pos, int d)
	{
		CNT[pos] += d;
		if(CNT[pos] == 0 || CNT[pos] == d)
		{
			int idx = lf[pos];
			tr[idx].mx = CNT[pos] ? a[pos].second : -inf;

			while(idx)
			{
				idx = (idx - 1) >> 1;
				tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
			}
		}
	}

	void add(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]++;
			tr[idx].mx = CNT[l] ? a[l].second : -inf;
			return;
		}

		int mid = (l + r) >> 1;
		add(pos, l, mid, 2 * idx + 1);
		add(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void rem(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]--;
			tr[idx].mx = CNT[l] ? a[l].second : -inf;
			return;
		}

		int mid = (l + r) >> 1;
		rem(pos, l, mid, 2 * idx + 1);
		rem(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void get_nodes(int qL, int qR, int l, int r, int idx, vector<int> &li)
	{
		if(l > qR || r < qL) return;
		if(qL <= l && r <= qR)
		{
			li.push_back(idx);
			return;
		}

		int mid = (l + r) >> 1;
		get_nodes(qL, qR, l, mid, 2 * idx + 1, li);
		get_nodes(qL, qR, mid + 1, r, 2 * idx + 2, li);
	}

	int get_right(int l, int r, int idx, int X)
	{
		if(l == r) return l;
		int mid = (l + r) >> 1;
		if(tr[2 * idx + 1].mx >= X) return get_right(l, mid, 2 * idx + 1, X);
		else return get_right(mid + 1, r, 2 * idx + 2, X);
	}

	int N;

	void init()
	{
		N = SZ(Li);
		a = Li;
		init(0, N - 1, 0);
	}

	void add_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(l, r)) - a.begin();
		change_cnt(pos, 1);
	}

	void rem_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(l, r)) - a.begin();
		change_cnt(pos, -1);
	}

	int query(int x)
	{
		vector<int> li;
		int Ren = L_B(ALL(a), make_pair(x, 10 + inf)) - a.begin() - 1; 
		get_nodes(0, Ren, 0, N - 1, 0, li);

		for(auto it: li)
			if(tr[it].mx >= x)
				return x - a[get_right(bound_L[it], bound_R[it], it, x)].first;

		return -inf;
	}

} L;

struct segment_tree_R
{
	vector<pair<int, int> > a;

	struct node
	{
		int mn;
		node() { mn = inf; }
		node(int val) { mn = val; }
	};

	node temp, broken;

	node merge(node l, node r)
	{
		temp.mn = min(l.mn, r.mn);
		return temp;
	}

	int bound_L[4 * MAXN], bound_R[4 * MAXN];

	node tr[4 * MAXN];
	int CNT[MAXN], lf[MAXN];

	void init(int l, int r, int idx)
	{
		bound_L[idx] = l;
		bound_R[idx] = r;
		if(l == r)
		{
			CNT[l] = 0;
			lf[l] = idx;
			tr[idx] = node();
			return;
		}

		int mid = (l + r) >> 1;
		init(l, mid, 2 * idx + 1);
		init(mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void change_cnt(int pos, int d)
	{
		CNT[pos] += d;
		if(CNT[pos] == 0 || CNT[pos] == d)
		{
			int idx = lf[pos];
			tr[idx].mn = CNT[pos] ? a[pos].second : inf;

			while(idx)
			{
				idx = (idx - 1) >> 1;
				tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
			}
		}
	}

	void add(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]++;
			tr[idx].mn = CNT[l] ? a[l].second : inf;
			return;
		}

		int mid = (l + r) >> 1;
		add(pos, l, mid, 2 * idx + 1);
		add(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void rem(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]--;
			tr[idx].mn = CNT[l] ? a[l].second : inf;
			return;
		}

		int mid = (l + r) >> 1;
		rem(pos, l, mid, 2 * idx + 1);
		rem(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void get_nodes(int qL, int qR, int l, int r, int idx, vector<int> &li)
	{
		if(l > qR || r < qL) return;
		if(qL <= l && r <= qR)
		{
			li.push_back(idx);
			return;
		}

		int mid = (l + r) >> 1;
		get_nodes(qL, qR, l, mid, 2 * idx + 1, li);
		get_nodes(qL, qR, mid + 1, r, 2 * idx + 2, li);
	}

	int get_left(int l, int r, int idx, int X)
	{
		if(l == r) return l;
		int mid = (l + r) >> 1;
		if(tr[2 * idx + 2].mn <= X) return get_left(mid + 1, r, 2 * idx + 2, X);
		else return get_left(l, mid, 2 * idx + 1, X);
	}

	int N;

	void init()
	{
		N = SZ(Li);
		a = Li2;
		init(0, N - 1, 0);
	}

	void add_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(r, l)) - a.begin();
		change_cnt(pos, 1);
	}

	void rem_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(r, l)) - a.begin();
		change_cnt(pos, -1);
	}

	int query(int x)
	{
		vector<int> li;
		int Lst = L_B(ALL(a), make_pair(x, -inf - 10)) - a.begin(); 
		get_nodes(Lst, N - 1, 0, N - 1, 0, li);

		reverse(li.begin(), li.end());
		for(auto it: li)
			if(tr[it].mn <= x)
				return a[get_left(bound_L[it], bound_R[it], it, x)].first - x;

		return -inf;
	}

} R;

int read_int();

int n, k, q;

struct event
{
	int type;
	int T, x, tp, idx;

	event() { type = tp = T = x = 0; idx = -1; }
	event(int t, int Tm, int X, int i, int pp = -1)
	{
		type = t;
		T = Tm;
		x = X;
		idx = i;
		tp = pp;
	}
};

bool cmp(event a, event b) 
{ 
	if(a.T != b.T) return a.T < b.T; 
	return a.type < b.type;
}

vector<event> Ev;
int answer[MAXN];

void read()
{
	n = read_int();
	k = read_int();
	q = read_int();

	for(int i = 0; i < n; i++)
	{
		int x, t, a, b;
		x = read_int();
		t = read_int();
		a = read_int();
		b = read_int();

		Ev.push_back(event(0, a, x, i, t));
		Ev.push_back(event(1, b + 1, x, i, t));
	}

	for(int i = 0; i < q; i++)
	{
		int x, t;
		x = read_int();
		t = read_int();
		Ev.push_back(event(2, t, x, i));
	}
}

set<pair<int, int> > ST[MAXN];

void add_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) L.add_interval(l, mid);
	if(mid + 1 <= r) R.add_interval(mid + 1, r);
}

void rem_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) L.rem_interval(l, mid);
	if(mid + 1 <= r) R.rem_interval(mid + 1, r);
}

int query(int x) { return max(L.query(x), R.query(x)); }

void add(int y, int x, int i)
{
	auto it = ST[y].insert({x, i}).first;
	auto aft = next(it);
	auto bef = prev(it);

	rem_interval(bef->first, aft->first);
	add_interval(bef->first, x);
	add_interval(x, aft->first);
}

void rem(int y, int x, int i)
{
	auto aft = ST[y].erase(ST[y].find({x, i}));
	auto bef = prev(aft);

	rem_interval(bef->first, x);
	rem_interval(x, aft->first);
	add_interval(bef->first, aft->first);
}

void prep_add_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) Li.push_back({l, mid});
	if(mid + 1 <= r) Li2.push_back({r, mid + 1});
}

void prep_add(int y, int x, int i)
{
	auto it = ST[y].insert({x, i}).first;
	auto aft = next(it);
	auto bef = prev(it);

	prep_add_interval(bef->first, x);
	prep_add_interval(x, aft->first);
}

void prep_rem(int y, int x, int i)
{
	auto aft = ST[y].erase(ST[y].find({x, i}));
	auto bef = prev(aft);

	prep_add_interval(bef->first, aft->first);
}

void solve()
{
	for(int i = 1; i <= k; i++)
		ST[i].insert({-inf, -1}), ST[i].insert({inf, -1});

	prep_add_interval(-inf, inf);

	sort(ALL(Ev), cmp);

	for(auto it: Ev)
		if(it.type == 0)
			prep_add(it.tp, it.x, it.idx);
		else if(it.type == 1)
			prep_rem(it.tp, it.x, it.idx);

	sort(ALL(Li));
	Li.erase(unique(ALL(Li)), Li.end());

	sort(ALL(Li2));
	Li2.erase(unique(ALL(Li2)), Li2.end());

	L.init();
	R.init();

	for(int i = 0; i < k; i++)
		add_interval(-inf, inf);

	for(auto it: Ev)
		if(it.type == 0)
			add(it.tp, it.x, it.idx);
		else if(it.type == 1)
			rem(it.tp, it.x, it.idx);
		else 
			answer[it.idx] = query(it.x);

	for(int i = 0; i < q; i++)
		if(answer[i] < (int)2e8) cout << answer[i] << endl;
		else cout << -1 << endl;
}

int main()
{
	ios_base::sync_with_stdio(false);
	cin.tie(NULL);

	read();
	solve();
	return 0;
}

const int maxl = 100000;
char buff[maxl];
int ret_int, pos_buff = 0;

void next_char() { if(++pos_buff == maxl) fread(buff, 1, maxl, stdin), pos_buff = 0; }

int read_int()
{
	ret_int = 0;
	for(; buff[pos_buff] < '0' || buff[pos_buff] > '9'; next_char());
	for(; buff[pos_buff] >= '0' && buff[pos_buff] <= '9'; next_char())
		ret_int = ret_int * 10 + buff[pos_buff] - '0';
	return ret_int;
}

Compilation message

new_home.cpp: In function 'void next_char()':
new_home.cpp:530:70: warning: ignoring return value of 'size_t fread(void*, size_t, size_t, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void next_char() { if(++pos_buff == maxl) fread(buff, 1, maxl, stdin), pos_buff = 0; }
                                           ~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 145 ms 164600 KB Output is correct
2 Correct 144 ms 164696 KB Output is correct
3 Correct 145 ms 164728 KB Output is correct
4 Correct 144 ms 164728 KB Output is correct
5 Correct 148 ms 164840 KB Output is correct
6 Correct 167 ms 165012 KB Output is correct
7 Correct 157 ms 165012 KB Output is correct
8 Correct 149 ms 165012 KB Output is correct
9 Correct 149 ms 165020 KB Output is correct
10 Correct 150 ms 165020 KB Output is correct
11 Correct 148 ms 165020 KB Output is correct
12 Correct 148 ms 165064 KB Output is correct
13 Correct 147 ms 165064 KB Output is correct
14 Correct 147 ms 165064 KB Output is correct
15 Correct 145 ms 165100 KB Output is correct
16 Correct 145 ms 165100 KB Output is correct
17 Correct 146 ms 165116 KB Output is correct
18 Correct 146 ms 165116 KB Output is correct
19 Correct 151 ms 165116 KB Output is correct
20 Correct 145 ms 165116 KB Output is correct
21 Correct 146 ms 165116 KB Output is correct
22 Correct 156 ms 165116 KB Output is correct
23 Correct 145 ms 165116 KB Output is correct
24 Correct 151 ms 165176 KB Output is correct
25 Correct 149 ms 165176 KB Output is correct
26 Correct 166 ms 165176 KB Output is correct
27 Correct 148 ms 165176 KB Output is correct
28 Correct 147 ms 165192 KB Output is correct
29 Correct 147 ms 165192 KB Output is correct
30 Correct 148 ms 165192 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 145 ms 164600 KB Output is correct
2 Correct 144 ms 164696 KB Output is correct
3 Correct 145 ms 164728 KB Output is correct
4 Correct 144 ms 164728 KB Output is correct
5 Correct 148 ms 164840 KB Output is correct
6 Correct 167 ms 165012 KB Output is correct
7 Correct 157 ms 165012 KB Output is correct
8 Correct 149 ms 165012 KB Output is correct
9 Correct 149 ms 165020 KB Output is correct
10 Correct 150 ms 165020 KB Output is correct
11 Correct 148 ms 165020 KB Output is correct
12 Correct 148 ms 165064 KB Output is correct
13 Correct 147 ms 165064 KB Output is correct
14 Correct 147 ms 165064 KB Output is correct
15 Correct 145 ms 165100 KB Output is correct
16 Correct 145 ms 165100 KB Output is correct
17 Correct 146 ms 165116 KB Output is correct
18 Correct 146 ms 165116 KB Output is correct
19 Correct 151 ms 165116 KB Output is correct
20 Correct 145 ms 165116 KB Output is correct
21 Correct 146 ms 165116 KB Output is correct
22 Correct 156 ms 165116 KB Output is correct
23 Correct 145 ms 165116 KB Output is correct
24 Correct 151 ms 165176 KB Output is correct
25 Correct 149 ms 165176 KB Output is correct
26 Correct 166 ms 165176 KB Output is correct
27 Correct 148 ms 165176 KB Output is correct
28 Correct 147 ms 165192 KB Output is correct
29 Correct 147 ms 165192 KB Output is correct
30 Correct 148 ms 165192 KB Output is correct
31 Correct 825 ms 188368 KB Output is correct
32 Correct 315 ms 188368 KB Output is correct
33 Correct 813 ms 188368 KB Output is correct
34 Correct 786 ms 188368 KB Output is correct
35 Correct 836 ms 188408 KB Output is correct
36 Correct 823 ms 188432 KB Output is correct
37 Correct 601 ms 188432 KB Output is correct
38 Correct 612 ms 188432 KB Output is correct
39 Correct 543 ms 188432 KB Output is correct
40 Correct 541 ms 188432 KB Output is correct
41 Correct 688 ms 188432 KB Output is correct
42 Correct 696 ms 188432 KB Output is correct
43 Correct 228 ms 188432 KB Output is correct
44 Correct 713 ms 188432 KB Output is correct
45 Correct 692 ms 188432 KB Output is correct
46 Correct 648 ms 188432 KB Output is correct
47 Correct 439 ms 188432 KB Output is correct
48 Correct 432 ms 188432 KB Output is correct
49 Correct 466 ms 188432 KB Output is correct
50 Correct 513 ms 188432 KB Output is correct
51 Correct 491 ms 188432 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4537 ms 275256 KB Output is correct
2 Correct 4811 ms 275256 KB Output is correct
3 Correct 3808 ms 294580 KB Output is correct
4 Correct 4278 ms 294580 KB Output is correct
5 Correct 4540 ms 294580 KB Output is correct
6 Correct 4646 ms 294580 KB Output is correct
7 Correct 3299 ms 294580 KB Output is correct
8 Correct 3430 ms 294580 KB Output is correct
9 Correct 3392 ms 294580 KB Output is correct
10 Correct 3825 ms 294580 KB Output is correct
11 Correct 2175 ms 294580 KB Output is correct
12 Correct 2379 ms 294580 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 5041 ms 294580 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 145 ms 164600 KB Output is correct
2 Correct 144 ms 164696 KB Output is correct
3 Correct 145 ms 164728 KB Output is correct
4 Correct 144 ms 164728 KB Output is correct
5 Correct 148 ms 164840 KB Output is correct
6 Correct 167 ms 165012 KB Output is correct
7 Correct 157 ms 165012 KB Output is correct
8 Correct 149 ms 165012 KB Output is correct
9 Correct 149 ms 165020 KB Output is correct
10 Correct 150 ms 165020 KB Output is correct
11 Correct 148 ms 165020 KB Output is correct
12 Correct 148 ms 165064 KB Output is correct
13 Correct 147 ms 165064 KB Output is correct
14 Correct 147 ms 165064 KB Output is correct
15 Correct 145 ms 165100 KB Output is correct
16 Correct 145 ms 165100 KB Output is correct
17 Correct 146 ms 165116 KB Output is correct
18 Correct 146 ms 165116 KB Output is correct
19 Correct 151 ms 165116 KB Output is correct
20 Correct 145 ms 165116 KB Output is correct
21 Correct 146 ms 165116 KB Output is correct
22 Correct 156 ms 165116 KB Output is correct
23 Correct 145 ms 165116 KB Output is correct
24 Correct 151 ms 165176 KB Output is correct
25 Correct 149 ms 165176 KB Output is correct
26 Correct 166 ms 165176 KB Output is correct
27 Correct 148 ms 165176 KB Output is correct
28 Correct 147 ms 165192 KB Output is correct
29 Correct 147 ms 165192 KB Output is correct
30 Correct 148 ms 165192 KB Output is correct
31 Correct 825 ms 188368 KB Output is correct
32 Correct 315 ms 188368 KB Output is correct
33 Correct 813 ms 188368 KB Output is correct
34 Correct 786 ms 188368 KB Output is correct
35 Correct 836 ms 188408 KB Output is correct
36 Correct 823 ms 188432 KB Output is correct
37 Correct 601 ms 188432 KB Output is correct
38 Correct 612 ms 188432 KB Output is correct
39 Correct 543 ms 188432 KB Output is correct
40 Correct 541 ms 188432 KB Output is correct
41 Correct 688 ms 188432 KB Output is correct
42 Correct 696 ms 188432 KB Output is correct
43 Correct 228 ms 188432 KB Output is correct
44 Correct 713 ms 188432 KB Output is correct
45 Correct 692 ms 188432 KB Output is correct
46 Correct 648 ms 188432 KB Output is correct
47 Correct 439 ms 188432 KB Output is correct
48 Correct 432 ms 188432 KB Output is correct
49 Correct 466 ms 188432 KB Output is correct
50 Correct 513 ms 188432 KB Output is correct
51 Correct 491 ms 188432 KB Output is correct
52 Correct 705 ms 294580 KB Output is correct
53 Correct 708 ms 294580 KB Output is correct
54 Correct 786 ms 294580 KB Output is correct
55 Correct 681 ms 294580 KB Output is correct
56 Correct 669 ms 294580 KB Output is correct
57 Correct 677 ms 294580 KB Output is correct
58 Correct 718 ms 294580 KB Output is correct
59 Correct 702 ms 294580 KB Output is correct
60 Correct 704 ms 294580 KB Output is correct
61 Correct 248 ms 294580 KB Output is correct
62 Correct 723 ms 294580 KB Output is correct
63 Correct 758 ms 294580 KB Output is correct
64 Correct 816 ms 294580 KB Output is correct
65 Correct 788 ms 294580 KB Output is correct
66 Correct 745 ms 294580 KB Output is correct
67 Correct 355 ms 294580 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 145 ms 164600 KB Output is correct
2 Correct 144 ms 164696 KB Output is correct
3 Correct 145 ms 164728 KB Output is correct
4 Correct 144 ms 164728 KB Output is correct
5 Correct 148 ms 164840 KB Output is correct
6 Correct 167 ms 165012 KB Output is correct
7 Correct 157 ms 165012 KB Output is correct
8 Correct 149 ms 165012 KB Output is correct
9 Correct 149 ms 165020 KB Output is correct
10 Correct 150 ms 165020 KB Output is correct
11 Correct 148 ms 165020 KB Output is correct
12 Correct 148 ms 165064 KB Output is correct
13 Correct 147 ms 165064 KB Output is correct
14 Correct 147 ms 165064 KB Output is correct
15 Correct 145 ms 165100 KB Output is correct
16 Correct 145 ms 165100 KB Output is correct
17 Correct 146 ms 165116 KB Output is correct
18 Correct 146 ms 165116 KB Output is correct
19 Correct 151 ms 165116 KB Output is correct
20 Correct 145 ms 165116 KB Output is correct
21 Correct 146 ms 165116 KB Output is correct
22 Correct 156 ms 165116 KB Output is correct
23 Correct 145 ms 165116 KB Output is correct
24 Correct 151 ms 165176 KB Output is correct
25 Correct 149 ms 165176 KB Output is correct
26 Correct 166 ms 165176 KB Output is correct
27 Correct 148 ms 165176 KB Output is correct
28 Correct 147 ms 165192 KB Output is correct
29 Correct 147 ms 165192 KB Output is correct
30 Correct 148 ms 165192 KB Output is correct
31 Correct 825 ms 188368 KB Output is correct
32 Correct 315 ms 188368 KB Output is correct
33 Correct 813 ms 188368 KB Output is correct
34 Correct 786 ms 188368 KB Output is correct
35 Correct 836 ms 188408 KB Output is correct
36 Correct 823 ms 188432 KB Output is correct
37 Correct 601 ms 188432 KB Output is correct
38 Correct 612 ms 188432 KB Output is correct
39 Correct 543 ms 188432 KB Output is correct
40 Correct 541 ms 188432 KB Output is correct
41 Correct 688 ms 188432 KB Output is correct
42 Correct 696 ms 188432 KB Output is correct
43 Correct 228 ms 188432 KB Output is correct
44 Correct 713 ms 188432 KB Output is correct
45 Correct 692 ms 188432 KB Output is correct
46 Correct 648 ms 188432 KB Output is correct
47 Correct 439 ms 188432 KB Output is correct
48 Correct 432 ms 188432 KB Output is correct
49 Correct 466 ms 188432 KB Output is correct
50 Correct 513 ms 188432 KB Output is correct
51 Correct 491 ms 188432 KB Output is correct
52 Correct 4537 ms 275256 KB Output is correct
53 Correct 4811 ms 275256 KB Output is correct
54 Correct 3808 ms 294580 KB Output is correct
55 Correct 4278 ms 294580 KB Output is correct
56 Correct 4540 ms 294580 KB Output is correct
57 Correct 4646 ms 294580 KB Output is correct
58 Correct 3299 ms 294580 KB Output is correct
59 Correct 3430 ms 294580 KB Output is correct
60 Correct 3392 ms 294580 KB Output is correct
61 Correct 3825 ms 294580 KB Output is correct
62 Correct 2175 ms 294580 KB Output is correct
63 Correct 2379 ms 294580 KB Output is correct
64 Execution timed out 5041 ms 294580 KB Time limit exceeded
65 Halted 0 ms 0 KB -