Submission #84178

# Submission time Handle Problem Language Result Execution time Memory
84178 2018-11-13T20:50:09 Z radoslav11 New Home (APIO18_new_home) C++14
57 / 100
5000 ms 294612 KB
/*
   We will use sweep line to solve the problem. We split the stores into 2 queries: 
   1) Add store i at time a[i]
   2) Remove store i at time b[i] + 1
   We will also have queries in the sweep line. Everything will be sorted by time in increasing order.

   Now to handle queries we will maintain K sets - the available positions of j-type stores. Then if A and B are two consecutive stores, the closest elements to all positions in [A; B] are A or B.
   Then let's have a two segment trees wtih sets - one for closest elements to the left and one for closest elements to the right. Now addition of store with type X will be done like that:

   1) Let A <= X <= B and A and B are the closest stores of the same type. 
   2) We remove the interval [A; B] from the DS.
   3) We add the intervals [A; X] and [X; B].

   Adding or removing an interval is done by finding the middle position and then concidering the two ranges - [L; Mid] and [Mid + 1; R].

   The complexity will be O(N * log N * log N).

   As sets are slow, we will compress the input in each segment tree node beforehand and then use priority queue instead of sets.

   Unfortunately the above data structure was too slow. So my second idea is to change the data structure to two simple treaps and do binary search on them. 
   The complexity will be O(N log N) this way. 

   Again unfortunately the treap solution was too slow (it got 47). So the third idea is to make the data structure offline. Then the treap can be replaced with segment tree.
   */

#include <bits/stdc++.h>
#define endl '\n'

#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")

#define SZ(x) ((int)x.size())
#define ALL(V) V.begin(), V.end()
#define L_B lower_bound
#define U_B upper_bound

using namespace std;
template<class T, class T2> inline int chkmax(T &x, const T2 &y) { return x < y ? x = y, 1 : 0; }
template<class T, class T2> inline int chkmin(T &x, const T2 &y) { return x > y ? x = y, 1 : 0; }
const int MAXN = (1 << 21);
const int inf = (int)1e9 + 42;

vector<pair<int, int> > Li, Li2;

struct segment_tree_L
{
	vector<pair<int, int> > a;

	struct node
	{
		int mx;
		node() { mx = -inf; }
		node(int val) { mx = val; }
	};

	node temp, broken;

	node merge(node l, node r)
	{
		temp.mx = max(l.mx, r.mx);
		return temp;
	}

	int bound_L[4 * MAXN], bound_R[4 * MAXN];

	node tr[4 * MAXN];
	int CNT[MAXN], lf[MAXN];

	void init(int l, int r, int idx)
	{
		bound_L[idx] = l;
		bound_R[idx] = r;
		if(l == r)
		{
			CNT[l] = 0;
			lf[l] = idx;
			tr[idx] = node();
			return;
		}

		int mid = (l + r) >> 1;
		init(l, mid, 2 * idx + 1);
		init(mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void change_cnt(int pos, int d)
	{
		CNT[pos] += d;
		if(CNT[pos] == 0 || CNT[pos] == d)
		{
			int idx = lf[pos];
			tr[idx].mx = CNT[pos] ? a[pos].second : -inf;
		
			while(idx)
			{
				idx = (idx - 1) >> 1;
				tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
			}
		}
	}

	void add(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]++;
			tr[idx].mx = CNT[l] ? a[l].second : -inf;
			return;
		}

		int mid = (l + r) >> 1;
		add(pos, l, mid, 2 * idx + 1);
		add(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}
	
	void rem(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]--;
			tr[idx].mx = CNT[l] ? a[l].second : -inf;
			return;
		}

		int mid = (l + r) >> 1;
		rem(pos, l, mid, 2 * idx + 1);
		rem(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void get_nodes(int qL, int qR, int l, int r, int idx, vector<int> &li)
	{
		if(l > qR || r < qL) return;
		if(qL <= l && r <= qR)
		{
			li.push_back(idx);
			return;
		}

		int mid = (l + r) >> 1;
		get_nodes(qL, qR, l, mid, 2 * idx + 1, li);
		get_nodes(qL, qR, mid + 1, r, 2 * idx + 2, li);
	}

	int get_right(int l, int r, int idx, int X)
	{
		if(l == r) return l;
		int mid = (l + r) >> 1;
		if(tr[2 * idx + 1].mx >= X) return get_right(l, mid, 2 * idx + 1, X);
		else return get_right(mid + 1, r, 2 * idx + 2, X);
	}

	int N;

	void init()
	{
		N = SZ(Li);
		a = Li;
		init(0, N - 1, 0);
	}

	void add_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(l, r)) - a.begin();
		change_cnt(pos, 1);
	}

	void rem_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(l, r)) - a.begin();
		change_cnt(pos, -1);
	}

	int query(int x)
	{
		vector<int> li;
		int Ren = L_B(ALL(a), make_pair(x, 10 + inf)) - a.begin() - 1; 
		get_nodes(0, Ren, 0, N - 1, 0, li);

		for(auto it: li)
			if(tr[it].mx >= x)
				return x - a[get_right(bound_L[it], bound_R[it], it, x)].first;

		return -inf;
	}

} L;

struct segment_tree_R
{
	vector<pair<int, int> > a;

	struct node
	{
		int mn;
		node() { mn = inf; }
		node(int val) { mn = val; }
	};

	node temp, broken;

	node merge(node l, node r)
	{
		temp.mn = min(l.mn, r.mn);
		return temp;
	}

	int bound_L[4 * MAXN], bound_R[4 * MAXN];

	node tr[4 * MAXN];
	int CNT[MAXN], lf[MAXN];

	void init(int l, int r, int idx)
	{
		bound_L[idx] = l;
		bound_R[idx] = r;
		if(l == r)
		{
			CNT[l] = 0;
			lf[l] = idx;
			tr[idx] = node();
			return;
		}

		int mid = (l + r) >> 1;
		init(l, mid, 2 * idx + 1);
		init(mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void change_cnt(int pos, int d)
	{
		CNT[pos] += d;
		if(CNT[pos] == 0 || CNT[pos] == d)
		{
			int idx = lf[pos];
			tr[idx].mn = CNT[pos] ? a[pos].second : inf;
		
			while(idx)
			{
				idx = (idx - 1) >> 1;
				tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
			}
		}
	}

	void add(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]++;
			tr[idx].mn = CNT[l] ? a[l].second : inf;
			return;
		}

		int mid = (l + r) >> 1;
		add(pos, l, mid, 2 * idx + 1);
		add(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}
	
	void rem(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]--;
			tr[idx].mn = CNT[l] ? a[l].second : inf;
			return;
		}

		int mid = (l + r) >> 1;
		rem(pos, l, mid, 2 * idx + 1);
		rem(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void get_nodes(int qL, int qR, int l, int r, int idx, vector<int> &li)
	{
		if(l > qR || r < qL) return;
		if(qL <= l && r <= qR)
		{
			li.push_back(idx);
			return;
		}

		int mid = (l + r) >> 1;
		get_nodes(qL, qR, l, mid, 2 * idx + 1, li);
		get_nodes(qL, qR, mid + 1, r, 2 * idx + 2, li);
	}

	int get_left(int l, int r, int idx, int X)
	{
		if(l == r) return l;
		int mid = (l + r) >> 1;
		if(tr[2 * idx + 2].mn <= X) return get_left(mid + 1, r, 2 * idx + 2, X);
		else return get_left(l, mid, 2 * idx + 1, X);
	}

	int N;

	void init()
	{
		N = SZ(Li);
		a = Li2;
		init(0, N - 1, 0);
	}

	void add_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(r, l)) - a.begin();
		change_cnt(pos, 1);
	}

	void rem_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(r, l)) - a.begin();
		change_cnt(pos, -1);
	}

	int query(int x)
	{
		vector<int> li;
		int Lst = L_B(ALL(a), make_pair(x, -inf - 10)) - a.begin(); 
		get_nodes(Lst, N - 1, 0, N - 1, 0, li);

		reverse(li.begin(), li.end());
		for(auto it: li)
			if(tr[it].mn <= x)
				return a[get_left(bound_L[it], bound_R[it], it, x)].first - x;

		return -inf;
	}

} R;

int read_int();

int n, k, q;

struct event
{
	int type;
	int T, x, tp, idx;

	event() { type = tp = T = x = 0; idx = -1; }
	event(int t, int Tm, int X, int i, int pp = -1)
	{
		type = t;
		T = Tm;
		x = X;
		idx = i;
		tp = pp;
	}
};

bool cmp(event a, event b) 
{ 
	if(a.T != b.T) return a.T < b.T; 
	return a.type < b.type;
}

vector<event> Ev;
int answer[MAXN];

void read()
{
	n = read_int();
	k = read_int();
	q = read_int();

	for(int i = 0; i < n; i++)
	{
		int x, t, a, b;
		x = read_int();
		t = read_int();
		a = read_int();
		b = read_int();

		Ev.push_back(event(0, a, x, i, t));
		Ev.push_back(event(1, b + 1, x, i, t));
	}

	for(int i = 0; i < q; i++)
	{
		int x, t;
		x = read_int();
		t = read_int();
		Ev.push_back(event(2, t, x, i));
	}
}

set<pair<int, int> > ST[MAXN];

void add_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) L.add_interval(l, mid);
	if(mid + 1 <= r) R.add_interval(mid + 1, r);
}

void rem_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) L.rem_interval(l, mid);
	if(mid + 1 <= r) R.rem_interval(mid + 1, r);
}

int query(int x) { return max(L.query(x), R.query(x)); }

void add(int y, int x, int i)
{
	auto aft = ST[y].L_B({x, i});
	auto bef = prev(aft);

	ST[y].insert({x, i});

	rem_interval(bef->first, aft->first);
	add_interval(bef->first, x);
	add_interval(x, aft->first);
}

void rem(int y, int x, int i)
{
	ST[y].erase({x, i});

	auto aft = ST[y].L_B({x, i});
	auto bef = prev(aft);

	rem_interval(bef->first, x);
	rem_interval(x, aft->first);
	add_interval(bef->first, aft->first);
}

void prep_add_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) Li.push_back({l, mid});
	if(mid + 1 <= r) Li2.push_back({r, mid + 1});
}

void prep_add(int y, int x, int i)
{
	auto aft = ST[y].L_B({x, i});
	auto bef = prev(aft);

	ST[y].insert({x, i});

	prep_add_interval(bef->first, x);
	prep_add_interval(x, aft->first);
}

void prep_rem(int y, int x, int i)
{
	ST[y].erase({x, i});

	auto aft = ST[y].L_B({x, i});
	auto bef = prev(aft);

	prep_add_interval(bef->first, aft->first);
}

void solve()
{
	for(int i = 1; i <= k; i++)
		ST[i].insert({-inf, -1}), ST[i].insert({inf, -1});
	
	prep_add_interval(-inf, inf);

	sort(ALL(Ev), cmp);
	
	for(auto it: Ev)
		if(it.type == 0)
			prep_add(it.tp, it.x, it.idx);
		else if(it.type == 1)
			prep_rem(it.tp, it.x, it.idx);

	sort(ALL(Li));
	Li.erase(unique(ALL(Li)), Li.end());
	
	sort(ALL(Li2));
	Li2.erase(unique(ALL(Li2)), Li2.end());
	
	L.init();
	R.init();
	
	for(int i = 0; i < k; i++)
		add_interval(-inf, inf);

	for(auto it: Ev)
		if(it.type == 0)
			add(it.tp, it.x, it.idx);
		else if(it.type == 1)
			rem(it.tp, it.x, it.idx);
		else 
			answer[it.idx] = query(it.x);

	for(int i = 0; i < q; i++)
		if(answer[i] < (int)2e8) cout << answer[i] << endl;
		else cout << -1 << endl;
}

int main()
{
	ios_base::sync_with_stdio(false);
	cin.tie(NULL);

	read();
	solve();
	return 0;
}

const int maxl = 100000;
char buff[maxl];
int ret_int, pos_buff = 0;

void next_char() { if(++pos_buff == maxl) fread(buff, 1, maxl, stdin), pos_buff = 0; }

int read_int()
{
	ret_int = 0;
	for(; buff[pos_buff] < '0' || buff[pos_buff] > '9'; next_char());
	for(; buff[pos_buff] >= '0' && buff[pos_buff] <= '9'; next_char())
		ret_int = ret_int * 10 + buff[pos_buff] - '0';
	return ret_int;
}

Compilation message

new_home.cpp: In function 'void next_char()':
new_home.cpp:536:70: warning: ignoring return value of 'size_t fread(void*, size_t, size_t, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void next_char() { if(++pos_buff == maxl) fread(buff, 1, maxl, stdin), pos_buff = 0; }
                                           ~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 175 ms 164560 KB Output is correct
2 Correct 192 ms 164684 KB Output is correct
3 Correct 177 ms 164684 KB Output is correct
4 Correct 172 ms 164684 KB Output is correct
5 Correct 173 ms 164696 KB Output is correct
6 Correct 174 ms 164832 KB Output is correct
7 Correct 174 ms 164852 KB Output is correct
8 Correct 173 ms 164904 KB Output is correct
9 Correct 170 ms 164944 KB Output is correct
10 Correct 175 ms 165028 KB Output is correct
11 Correct 172 ms 165028 KB Output is correct
12 Correct 188 ms 165212 KB Output is correct
13 Correct 172 ms 165212 KB Output is correct
14 Correct 174 ms 165212 KB Output is correct
15 Correct 174 ms 165212 KB Output is correct
16 Correct 173 ms 165212 KB Output is correct
17 Correct 175 ms 165212 KB Output is correct
18 Correct 188 ms 165212 KB Output is correct
19 Correct 171 ms 165212 KB Output is correct
20 Correct 176 ms 165212 KB Output is correct
21 Correct 171 ms 165212 KB Output is correct
22 Correct 174 ms 165212 KB Output is correct
23 Correct 173 ms 165212 KB Output is correct
24 Correct 172 ms 165212 KB Output is correct
25 Correct 176 ms 165212 KB Output is correct
26 Correct 172 ms 165212 KB Output is correct
27 Correct 171 ms 165212 KB Output is correct
28 Correct 174 ms 165212 KB Output is correct
29 Correct 173 ms 165212 KB Output is correct
30 Correct 178 ms 165212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 175 ms 164560 KB Output is correct
2 Correct 192 ms 164684 KB Output is correct
3 Correct 177 ms 164684 KB Output is correct
4 Correct 172 ms 164684 KB Output is correct
5 Correct 173 ms 164696 KB Output is correct
6 Correct 174 ms 164832 KB Output is correct
7 Correct 174 ms 164852 KB Output is correct
8 Correct 173 ms 164904 KB Output is correct
9 Correct 170 ms 164944 KB Output is correct
10 Correct 175 ms 165028 KB Output is correct
11 Correct 172 ms 165028 KB Output is correct
12 Correct 188 ms 165212 KB Output is correct
13 Correct 172 ms 165212 KB Output is correct
14 Correct 174 ms 165212 KB Output is correct
15 Correct 174 ms 165212 KB Output is correct
16 Correct 173 ms 165212 KB Output is correct
17 Correct 175 ms 165212 KB Output is correct
18 Correct 188 ms 165212 KB Output is correct
19 Correct 171 ms 165212 KB Output is correct
20 Correct 176 ms 165212 KB Output is correct
21 Correct 171 ms 165212 KB Output is correct
22 Correct 174 ms 165212 KB Output is correct
23 Correct 173 ms 165212 KB Output is correct
24 Correct 172 ms 165212 KB Output is correct
25 Correct 176 ms 165212 KB Output is correct
26 Correct 172 ms 165212 KB Output is correct
27 Correct 171 ms 165212 KB Output is correct
28 Correct 174 ms 165212 KB Output is correct
29 Correct 173 ms 165212 KB Output is correct
30 Correct 178 ms 165212 KB Output is correct
31 Correct 908 ms 188328 KB Output is correct
32 Correct 355 ms 188328 KB Output is correct
33 Correct 875 ms 188328 KB Output is correct
34 Correct 852 ms 188328 KB Output is correct
35 Correct 898 ms 188368 KB Output is correct
36 Correct 915 ms 188368 KB Output is correct
37 Correct 657 ms 188368 KB Output is correct
38 Correct 664 ms 188368 KB Output is correct
39 Correct 563 ms 188368 KB Output is correct
40 Correct 589 ms 188368 KB Output is correct
41 Correct 748 ms 188368 KB Output is correct
42 Correct 733 ms 188368 KB Output is correct
43 Correct 260 ms 188368 KB Output is correct
44 Correct 726 ms 188368 KB Output is correct
45 Correct 728 ms 188368 KB Output is correct
46 Correct 709 ms 188368 KB Output is correct
47 Correct 463 ms 188368 KB Output is correct
48 Correct 494 ms 188368 KB Output is correct
49 Correct 516 ms 188368 KB Output is correct
50 Correct 571 ms 188368 KB Output is correct
51 Correct 529 ms 188368 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4286 ms 275036 KB Output is correct
2 Correct 4670 ms 275036 KB Output is correct
3 Correct 3602 ms 294372 KB Output is correct
4 Correct 4069 ms 294372 KB Output is correct
5 Correct 4427 ms 294372 KB Output is correct
6 Correct 4869 ms 294372 KB Output is correct
7 Correct 3265 ms 294612 KB Output is correct
8 Correct 3489 ms 294612 KB Output is correct
9 Correct 3333 ms 294612 KB Output is correct
10 Correct 3863 ms 294612 KB Output is correct
11 Correct 2370 ms 294612 KB Output is correct
12 Correct 2495 ms 294612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 5052 ms 294612 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 175 ms 164560 KB Output is correct
2 Correct 192 ms 164684 KB Output is correct
3 Correct 177 ms 164684 KB Output is correct
4 Correct 172 ms 164684 KB Output is correct
5 Correct 173 ms 164696 KB Output is correct
6 Correct 174 ms 164832 KB Output is correct
7 Correct 174 ms 164852 KB Output is correct
8 Correct 173 ms 164904 KB Output is correct
9 Correct 170 ms 164944 KB Output is correct
10 Correct 175 ms 165028 KB Output is correct
11 Correct 172 ms 165028 KB Output is correct
12 Correct 188 ms 165212 KB Output is correct
13 Correct 172 ms 165212 KB Output is correct
14 Correct 174 ms 165212 KB Output is correct
15 Correct 174 ms 165212 KB Output is correct
16 Correct 173 ms 165212 KB Output is correct
17 Correct 175 ms 165212 KB Output is correct
18 Correct 188 ms 165212 KB Output is correct
19 Correct 171 ms 165212 KB Output is correct
20 Correct 176 ms 165212 KB Output is correct
21 Correct 171 ms 165212 KB Output is correct
22 Correct 174 ms 165212 KB Output is correct
23 Correct 173 ms 165212 KB Output is correct
24 Correct 172 ms 165212 KB Output is correct
25 Correct 176 ms 165212 KB Output is correct
26 Correct 172 ms 165212 KB Output is correct
27 Correct 171 ms 165212 KB Output is correct
28 Correct 174 ms 165212 KB Output is correct
29 Correct 173 ms 165212 KB Output is correct
30 Correct 178 ms 165212 KB Output is correct
31 Correct 908 ms 188328 KB Output is correct
32 Correct 355 ms 188328 KB Output is correct
33 Correct 875 ms 188328 KB Output is correct
34 Correct 852 ms 188328 KB Output is correct
35 Correct 898 ms 188368 KB Output is correct
36 Correct 915 ms 188368 KB Output is correct
37 Correct 657 ms 188368 KB Output is correct
38 Correct 664 ms 188368 KB Output is correct
39 Correct 563 ms 188368 KB Output is correct
40 Correct 589 ms 188368 KB Output is correct
41 Correct 748 ms 188368 KB Output is correct
42 Correct 733 ms 188368 KB Output is correct
43 Correct 260 ms 188368 KB Output is correct
44 Correct 726 ms 188368 KB Output is correct
45 Correct 728 ms 188368 KB Output is correct
46 Correct 709 ms 188368 KB Output is correct
47 Correct 463 ms 188368 KB Output is correct
48 Correct 494 ms 188368 KB Output is correct
49 Correct 516 ms 188368 KB Output is correct
50 Correct 571 ms 188368 KB Output is correct
51 Correct 529 ms 188368 KB Output is correct
52 Correct 740 ms 294612 KB Output is correct
53 Correct 713 ms 294612 KB Output is correct
54 Correct 840 ms 294612 KB Output is correct
55 Correct 722 ms 294612 KB Output is correct
56 Correct 701 ms 294612 KB Output is correct
57 Correct 746 ms 294612 KB Output is correct
58 Correct 755 ms 294612 KB Output is correct
59 Correct 746 ms 294612 KB Output is correct
60 Correct 756 ms 294612 KB Output is correct
61 Correct 276 ms 294612 KB Output is correct
62 Correct 745 ms 294612 KB Output is correct
63 Correct 796 ms 294612 KB Output is correct
64 Correct 791 ms 294612 KB Output is correct
65 Correct 829 ms 294612 KB Output is correct
66 Correct 733 ms 294612 KB Output is correct
67 Correct 365 ms 294612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 175 ms 164560 KB Output is correct
2 Correct 192 ms 164684 KB Output is correct
3 Correct 177 ms 164684 KB Output is correct
4 Correct 172 ms 164684 KB Output is correct
5 Correct 173 ms 164696 KB Output is correct
6 Correct 174 ms 164832 KB Output is correct
7 Correct 174 ms 164852 KB Output is correct
8 Correct 173 ms 164904 KB Output is correct
9 Correct 170 ms 164944 KB Output is correct
10 Correct 175 ms 165028 KB Output is correct
11 Correct 172 ms 165028 KB Output is correct
12 Correct 188 ms 165212 KB Output is correct
13 Correct 172 ms 165212 KB Output is correct
14 Correct 174 ms 165212 KB Output is correct
15 Correct 174 ms 165212 KB Output is correct
16 Correct 173 ms 165212 KB Output is correct
17 Correct 175 ms 165212 KB Output is correct
18 Correct 188 ms 165212 KB Output is correct
19 Correct 171 ms 165212 KB Output is correct
20 Correct 176 ms 165212 KB Output is correct
21 Correct 171 ms 165212 KB Output is correct
22 Correct 174 ms 165212 KB Output is correct
23 Correct 173 ms 165212 KB Output is correct
24 Correct 172 ms 165212 KB Output is correct
25 Correct 176 ms 165212 KB Output is correct
26 Correct 172 ms 165212 KB Output is correct
27 Correct 171 ms 165212 KB Output is correct
28 Correct 174 ms 165212 KB Output is correct
29 Correct 173 ms 165212 KB Output is correct
30 Correct 178 ms 165212 KB Output is correct
31 Correct 908 ms 188328 KB Output is correct
32 Correct 355 ms 188328 KB Output is correct
33 Correct 875 ms 188328 KB Output is correct
34 Correct 852 ms 188328 KB Output is correct
35 Correct 898 ms 188368 KB Output is correct
36 Correct 915 ms 188368 KB Output is correct
37 Correct 657 ms 188368 KB Output is correct
38 Correct 664 ms 188368 KB Output is correct
39 Correct 563 ms 188368 KB Output is correct
40 Correct 589 ms 188368 KB Output is correct
41 Correct 748 ms 188368 KB Output is correct
42 Correct 733 ms 188368 KB Output is correct
43 Correct 260 ms 188368 KB Output is correct
44 Correct 726 ms 188368 KB Output is correct
45 Correct 728 ms 188368 KB Output is correct
46 Correct 709 ms 188368 KB Output is correct
47 Correct 463 ms 188368 KB Output is correct
48 Correct 494 ms 188368 KB Output is correct
49 Correct 516 ms 188368 KB Output is correct
50 Correct 571 ms 188368 KB Output is correct
51 Correct 529 ms 188368 KB Output is correct
52 Correct 4286 ms 275036 KB Output is correct
53 Correct 4670 ms 275036 KB Output is correct
54 Correct 3602 ms 294372 KB Output is correct
55 Correct 4069 ms 294372 KB Output is correct
56 Correct 4427 ms 294372 KB Output is correct
57 Correct 4869 ms 294372 KB Output is correct
58 Correct 3265 ms 294612 KB Output is correct
59 Correct 3489 ms 294612 KB Output is correct
60 Correct 3333 ms 294612 KB Output is correct
61 Correct 3863 ms 294612 KB Output is correct
62 Correct 2370 ms 294612 KB Output is correct
63 Correct 2495 ms 294612 KB Output is correct
64 Execution timed out 5052 ms 294612 KB Time limit exceeded
65 Halted 0 ms 0 KB -