답안 #84175

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
84175 2018-11-13T20:48:17 Z radoslav11 새 집 (APIO18_new_home) C++14
57 / 100
5000 ms 420312 KB
/*
   We will use sweep line to solve the problem. We split the stores into 2 queries: 
   1) Add store i at time a[i]
   2) Remove store i at time b[i] + 1
   We will also have queries in the sweep line. Everything will be sorted by time in increasing order.

   Now to handle queries we will maintain K sets - the available positions of j-type stores. Then if A and B are two consecutive stores, the closest elements to all positions in [A; B] are A or B.
   Then let's have a two segment trees wtih sets - one for closest elements to the left and one for closest elements to the right. Now addition of store with type X will be done like that:

   1) Let A <= X <= B and A and B are the closest stores of the same type. 
   2) We remove the interval [A; B] from the DS.
   3) We add the intervals [A; X] and [X; B].

   Adding or removing an interval is done by finding the middle position and then concidering the two ranges - [L; Mid] and [Mid + 1; R].

   The complexity will be O(N * log N * log N).

   As sets are slow, we will compress the input in each segment tree node beforehand and then use priority queue instead of sets.

   Unfortunately the above data structure was too slow. So my second idea is to change the data structure to two simple treaps and do binary search on them. 
   The complexity will be O(N log N) this way. 

   Again unfortunately the treap solution was too slow (it got 47). So the third idea is to make the data structure offline. Then the treap can be replaced with segment tree.
   */

#include <bits/stdc++.h>
#define endl '\n'

//#pragma GCC optimize ("O3")
//#pragma GCC target ("sse4")

#define SZ(x) ((int)x.size())
#define ALL(V) V.begin(), V.end()
#define L_B lower_bound
#define U_B upper_bound

using namespace std;
template<class T, class T2> inline int chkmax(T &x, const T2 &y) { return x < y ? x = y, 1 : 0; }
template<class T, class T2> inline int chkmin(T &x, const T2 &y) { return x > y ? x = y, 1 : 0; }
const int MAXN = (1 << 21);
const int inf = (int)1e9 + 42;

vector<pair<int, int> > Li, Li2;

struct segment_tree_L
{
	vector<pair<int, int> > a;

	struct node
	{
		int mx;
		node() { mx = -inf; }
		node(int val) { mx = val; }
	};

	node temp, broken;

	node merge(node l, node r)
	{
		temp.mx = max(l.mx, r.mx);
		return temp;
	}

	int bound_L[4 * MAXN], bound_R[4 * MAXN];

	node tr[4 * MAXN];
	int CNT[MAXN], lf[MAXN];

	void init(int l, int r, int idx)
	{
		bound_L[idx] = l;
		bound_R[idx] = r;
		if(l == r)
		{
			CNT[l] = 0;
			lf[l] = idx;
			tr[idx] = node();
			return;
		}

		int mid = (l + r) >> 1;
		init(l, mid, 2 * idx + 1);
		init(mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void change_cnt(int pos, int d)
	{
		CNT[pos] += d;
		if(CNT[pos] == 0 || CNT[pos] == d)
		{
			int idx = lf[pos];
			tr[idx].mx = CNT[pos] ? a[pos].second : -inf;
		
			while(idx)
			{
				idx = (idx - 1) >> 1;
				tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
			}
		}
	}

	void add(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]++;
			tr[idx].mx = CNT[l] ? a[l].second : -inf;
			return;
		}

		int mid = (l + r) >> 1;
		add(pos, l, mid, 2 * idx + 1);
		add(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}
	
	void rem(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]--;
			tr[idx].mx = CNT[l] ? a[l].second : -inf;
			return;
		}

		int mid = (l + r) >> 1;
		rem(pos, l, mid, 2 * idx + 1);
		rem(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void get_nodes(int qL, int qR, int l, int r, int idx, vector<int> &li)
	{
		if(l > qR || r < qL) return;
		if(qL <= l && r <= qR)
		{
			li.push_back(idx);
			return;
		}

		int mid = (l + r) >> 1;
		get_nodes(qL, qR, l, mid, 2 * idx + 1, li);
		get_nodes(qL, qR, mid + 1, r, 2 * idx + 2, li);
	}

	int get_right(int l, int r, int idx, int X)
	{
		if(l == r) return l;
		int mid = (l + r) >> 1;
		if(tr[2 * idx + 1].mx >= X) return get_right(l, mid, 2 * idx + 1, X);
		else return get_right(mid + 1, r, 2 * idx + 2, X);
	}

	int N;

	void init()
	{
		N = SZ(Li);
		a = Li;
		init(0, N - 1, 0);
	}

	void add_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(l, r)) - a.begin();
		change_cnt(pos, 1);
	}

	void rem_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(l, r)) - a.begin();
		change_cnt(pos, -1);
	}

	int query(int x)
	{
		vector<int> li;
		int Ren = L_B(ALL(a), make_pair(x, 10 + inf)) - a.begin() - 1; 
		get_nodes(0, Ren, 0, N - 1, 0, li);

		for(auto it: li)
			if(tr[it].mx >= x)
				return x - a[get_right(bound_L[it], bound_R[it], it, x)].first;

		return -inf;
	}

} L;

struct segment_tree_R
{
	vector<pair<int, int> > a;

	struct node
	{
		int mn;
		node() { mn = inf; }
		node(int val) { mn = val; }
	};

	node temp, broken;

	node merge(node l, node r)
	{
		temp.mn = min(l.mn, r.mn);
		return temp;
	}

	int bound_L[4 * MAXN], bound_R[4 * MAXN];

	node tr[4 * MAXN];
	int CNT[MAXN], lf[MAXN];

	void init(int l, int r, int idx)
	{
		bound_L[idx] = l;
		bound_R[idx] = r;
		if(l == r)
		{
			CNT[l] = 0;
			lf[l] = idx;
			tr[idx] = node();
			return;
		}

		int mid = (l + r) >> 1;
		init(l, mid, 2 * idx + 1);
		init(mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void change_cnt(int pos, int d)
	{
		CNT[pos] += d;
		if(CNT[pos] == 0 || CNT[pos] == d)
		{
			int idx = lf[pos];
			tr[idx].mn = CNT[pos] ? a[pos].second : inf;
		
			while(idx)
			{
				idx = (idx - 1) >> 1;
				tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
			}
		}
	}

	void add(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]++;
			tr[idx].mn = CNT[l] ? a[l].second : inf;
			return;
		}

		int mid = (l + r) >> 1;
		add(pos, l, mid, 2 * idx + 1);
		add(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}
	
	void rem(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]--;
			tr[idx].mn = CNT[l] ? a[l].second : inf;
			return;
		}

		int mid = (l + r) >> 1;
		rem(pos, l, mid, 2 * idx + 1);
		rem(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void get_nodes(int qL, int qR, int l, int r, int idx, vector<int> &li)
	{
		if(l > qR || r < qL) return;
		if(qL <= l && r <= qR)
		{
			li.push_back(idx);
			return;
		}

		int mid = (l + r) >> 1;
		get_nodes(qL, qR, l, mid, 2 * idx + 1, li);
		get_nodes(qL, qR, mid + 1, r, 2 * idx + 2, li);
	}

	int get_left(int l, int r, int idx, int X)
	{
		if(l == r) return l;
		int mid = (l + r) >> 1;
		if(tr[2 * idx + 2].mn <= X) return get_left(mid + 1, r, 2 * idx + 2, X);
		else return get_left(l, mid, 2 * idx + 1, X);
	}

	int N;

	void init()
	{
		N = SZ(Li);
		a = Li2;
		init(0, N - 1, 0);
	}

	void add_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(r, l)) - a.begin();
		change_cnt(pos, 1);
	}

	void rem_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(r, l)) - a.begin();
		change_cnt(pos, -1);
	}

	int query(int x)
	{
		vector<int> li;
		int Lst = L_B(ALL(a), make_pair(x, -inf - 10)) - a.begin(); 
		get_nodes(Lst, N - 1, 0, N - 1, 0, li);

		reverse(li.begin(), li.end());
		for(auto it: li)
			if(tr[it].mn <= x)
				return a[get_left(bound_L[it], bound_R[it], it, x)].first - x;

		return -inf;
	}

} R;

int read_int();

int n, k, q;

struct event
{
	int type;
	int T, x, tp, idx;

	event() { type = tp = T = x = 0; idx = -1; }
	event(int t, int Tm, int X, int i, int pp = -1)
	{
		type = t;
		T = Tm;
		x = X;
		idx = i;
		tp = pp;
	}
};

bool cmp(event a, event b) 
{ 
	if(a.T != b.T) return a.T < b.T; 
	return a.type < b.type;
}

vector<event> Ev;
int answer[MAXN];

void read()
{
	n = read_int();
	k = read_int();
	q = read_int();

	for(int i = 0; i < n; i++)
	{
		int x, t, a, b;
		x = read_int();
		t = read_int();
		a = read_int();
		b = read_int();

		Ev.push_back(event(0, a, x, i, t));
		Ev.push_back(event(1, b + 1, x, i, t));
	}

	for(int i = 0; i < q; i++)
	{
		int x, t;
		x = read_int();
		t = read_int();
		Ev.push_back(event(2, t, x, i));
	}
}

set<pair<int, int> > ST[MAXN];

void add_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) L.add_interval(l, mid);
	if(mid + 1 <= r) R.add_interval(mid + 1, r);
}

void rem_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) L.rem_interval(l, mid);
	if(mid + 1 <= r) R.rem_interval(mid + 1, r);
}

int query(int x) { return max(L.query(x), R.query(x)); }

void add(int y, int x, int i)
{
	auto aft = ST[y].L_B({x, i});
	auto bef = prev(aft);

	ST[y].insert({x, i});

	rem_interval(bef->first, aft->first);
	add_interval(bef->first, x);
	add_interval(x, aft->first);
}

void rem(int y, int x, int i)
{
	ST[y].erase({x, i});

	auto aft = ST[y].L_B({x, i});
	auto bef = prev(aft);

	rem_interval(bef->first, x);
	rem_interval(x, aft->first);
	add_interval(bef->first, aft->first);
}

void prep_add_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) Li.push_back({l, mid});
	if(mid + 1 <= r) Li2.push_back({r, mid + 1});
}

void prep_add(int y, int x, int i)
{
	auto aft = ST[y].L_B({x, i});
	auto bef = prev(aft);

	ST[y].insert({x, i});

	prep_add_interval(bef->first, x);
	prep_add_interval(x, aft->first);
}

void prep_rem(int y, int x, int i)
{
	ST[y].erase({x, i});

	auto aft = ST[y].L_B({x, i});
	auto bef = prev(aft);

	prep_add_interval(bef->first, aft->first);
}

void solve()
{
	for(int i = 1; i <= k; i++)
		ST[i].insert({-inf, -1}), ST[i].insert({inf, -1});
	
	prep_add_interval(-inf, inf);

	sort(ALL(Ev), cmp);
	
	for(auto it: Ev)
		if(it.type == 0)
			prep_add(it.tp, it.x, it.idx);
		else if(it.type == 1)
			prep_rem(it.tp, it.x, it.idx);

	sort(ALL(Li));
	Li.erase(unique(ALL(Li)), Li.end());
	
	sort(ALL(Li2));
	Li2.erase(unique(ALL(Li2)), Li2.end());
	
	L.init();
	R.init();
	
	for(int i = 0; i < k; i++)
		add_interval(-inf, inf);

	for(auto it: Ev)
		if(it.type == 0)
			add(it.tp, it.x, it.idx);
		else if(it.type == 1)
			rem(it.tp, it.x, it.idx);
		else 
			answer[it.idx] = query(it.x);

	for(int i = 0; i < q; i++)
		if(answer[i] < (int)2e8) cout << answer[i] << endl;
		else cout << -1 << endl;
}

int main()
{
	ios_base::sync_with_stdio(false);
	cin.tie(NULL);

	read();
	solve();
	return 0;
}

const int maxl = 100000;
char buff[maxl];
int ret_int, pos_buff = 0;

void next_char() { if(++pos_buff == maxl) fread(buff, 1, maxl, stdin), pos_buff = 0; }

int read_int()
{
	ret_int = 0;
	for(; buff[pos_buff] < '0' || buff[pos_buff] > '9'; next_char());
	for(; buff[pos_buff] >= '0' && buff[pos_buff] <= '9'; next_char())
		ret_int = ret_int * 10 + buff[pos_buff] - '0';
	return ret_int;
}

Compilation message

new_home.cpp: In function 'void next_char()':
new_home.cpp:536:70: warning: ignoring return value of 'size_t fread(void*, size_t, size_t, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void next_char() { if(++pos_buff == maxl) fread(buff, 1, maxl, stdin), pos_buff = 0; }
                                           ~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 150 ms 164600 KB Output is correct
2 Correct 149 ms 164636 KB Output is correct
3 Correct 149 ms 164636 KB Output is correct
4 Correct 144 ms 164804 KB Output is correct
5 Correct 145 ms 164804 KB Output is correct
6 Correct 146 ms 164884 KB Output is correct
7 Correct 151 ms 164884 KB Output is correct
8 Correct 147 ms 164884 KB Output is correct
9 Correct 146 ms 164980 KB Output is correct
10 Correct 146 ms 164980 KB Output is correct
11 Correct 148 ms 164980 KB Output is correct
12 Correct 152 ms 164992 KB Output is correct
13 Correct 147 ms 164992 KB Output is correct
14 Correct 150 ms 164992 KB Output is correct
15 Correct 152 ms 164992 KB Output is correct
16 Correct 147 ms 164992 KB Output is correct
17 Correct 149 ms 165028 KB Output is correct
18 Correct 146 ms 165064 KB Output is correct
19 Correct 148 ms 165064 KB Output is correct
20 Correct 149 ms 165128 KB Output is correct
21 Correct 167 ms 165128 KB Output is correct
22 Correct 146 ms 165128 KB Output is correct
23 Correct 167 ms 165128 KB Output is correct
24 Correct 147 ms 165128 KB Output is correct
25 Correct 148 ms 165128 KB Output is correct
26 Correct 146 ms 165128 KB Output is correct
27 Correct 146 ms 165128 KB Output is correct
28 Correct 146 ms 165128 KB Output is correct
29 Correct 160 ms 165172 KB Output is correct
30 Correct 145 ms 165172 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 150 ms 164600 KB Output is correct
2 Correct 149 ms 164636 KB Output is correct
3 Correct 149 ms 164636 KB Output is correct
4 Correct 144 ms 164804 KB Output is correct
5 Correct 145 ms 164804 KB Output is correct
6 Correct 146 ms 164884 KB Output is correct
7 Correct 151 ms 164884 KB Output is correct
8 Correct 147 ms 164884 KB Output is correct
9 Correct 146 ms 164980 KB Output is correct
10 Correct 146 ms 164980 KB Output is correct
11 Correct 148 ms 164980 KB Output is correct
12 Correct 152 ms 164992 KB Output is correct
13 Correct 147 ms 164992 KB Output is correct
14 Correct 150 ms 164992 KB Output is correct
15 Correct 152 ms 164992 KB Output is correct
16 Correct 147 ms 164992 KB Output is correct
17 Correct 149 ms 165028 KB Output is correct
18 Correct 146 ms 165064 KB Output is correct
19 Correct 148 ms 165064 KB Output is correct
20 Correct 149 ms 165128 KB Output is correct
21 Correct 167 ms 165128 KB Output is correct
22 Correct 146 ms 165128 KB Output is correct
23 Correct 167 ms 165128 KB Output is correct
24 Correct 147 ms 165128 KB Output is correct
25 Correct 148 ms 165128 KB Output is correct
26 Correct 146 ms 165128 KB Output is correct
27 Correct 146 ms 165128 KB Output is correct
28 Correct 146 ms 165128 KB Output is correct
29 Correct 160 ms 165172 KB Output is correct
30 Correct 145 ms 165172 KB Output is correct
31 Correct 829 ms 188444 KB Output is correct
32 Correct 334 ms 188444 KB Output is correct
33 Correct 804 ms 188444 KB Output is correct
34 Correct 790 ms 188444 KB Output is correct
35 Correct 846 ms 188532 KB Output is correct
36 Correct 826 ms 188532 KB Output is correct
37 Correct 609 ms 188532 KB Output is correct
38 Correct 631 ms 188532 KB Output is correct
39 Correct 533 ms 188532 KB Output is correct
40 Correct 552 ms 188532 KB Output is correct
41 Correct 682 ms 188532 KB Output is correct
42 Correct 676 ms 188532 KB Output is correct
43 Correct 233 ms 188532 KB Output is correct
44 Correct 689 ms 188532 KB Output is correct
45 Correct 679 ms 188532 KB Output is correct
46 Correct 651 ms 188532 KB Output is correct
47 Correct 446 ms 188532 KB Output is correct
48 Correct 445 ms 188532 KB Output is correct
49 Correct 479 ms 188532 KB Output is correct
50 Correct 524 ms 188532 KB Output is correct
51 Correct 500 ms 188532 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4231 ms 275152 KB Output is correct
2 Correct 4679 ms 275152 KB Output is correct
3 Correct 3623 ms 308304 KB Output is correct
4 Correct 4196 ms 308304 KB Output is correct
5 Correct 4544 ms 309540 KB Output is correct
6 Correct 4741 ms 323496 KB Output is correct
7 Correct 3232 ms 361056 KB Output is correct
8 Correct 3474 ms 361056 KB Output is correct
9 Correct 3324 ms 367584 KB Output is correct
10 Correct 3794 ms 380244 KB Output is correct
11 Correct 2270 ms 390824 KB Output is correct
12 Correct 2409 ms 404880 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4926 ms 406448 KB Output is correct
2 Correct 1434 ms 406448 KB Output is correct
3 Execution timed out 5026 ms 420312 KB Time limit exceeded
4 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 150 ms 164600 KB Output is correct
2 Correct 149 ms 164636 KB Output is correct
3 Correct 149 ms 164636 KB Output is correct
4 Correct 144 ms 164804 KB Output is correct
5 Correct 145 ms 164804 KB Output is correct
6 Correct 146 ms 164884 KB Output is correct
7 Correct 151 ms 164884 KB Output is correct
8 Correct 147 ms 164884 KB Output is correct
9 Correct 146 ms 164980 KB Output is correct
10 Correct 146 ms 164980 KB Output is correct
11 Correct 148 ms 164980 KB Output is correct
12 Correct 152 ms 164992 KB Output is correct
13 Correct 147 ms 164992 KB Output is correct
14 Correct 150 ms 164992 KB Output is correct
15 Correct 152 ms 164992 KB Output is correct
16 Correct 147 ms 164992 KB Output is correct
17 Correct 149 ms 165028 KB Output is correct
18 Correct 146 ms 165064 KB Output is correct
19 Correct 148 ms 165064 KB Output is correct
20 Correct 149 ms 165128 KB Output is correct
21 Correct 167 ms 165128 KB Output is correct
22 Correct 146 ms 165128 KB Output is correct
23 Correct 167 ms 165128 KB Output is correct
24 Correct 147 ms 165128 KB Output is correct
25 Correct 148 ms 165128 KB Output is correct
26 Correct 146 ms 165128 KB Output is correct
27 Correct 146 ms 165128 KB Output is correct
28 Correct 146 ms 165128 KB Output is correct
29 Correct 160 ms 165172 KB Output is correct
30 Correct 145 ms 165172 KB Output is correct
31 Correct 829 ms 188444 KB Output is correct
32 Correct 334 ms 188444 KB Output is correct
33 Correct 804 ms 188444 KB Output is correct
34 Correct 790 ms 188444 KB Output is correct
35 Correct 846 ms 188532 KB Output is correct
36 Correct 826 ms 188532 KB Output is correct
37 Correct 609 ms 188532 KB Output is correct
38 Correct 631 ms 188532 KB Output is correct
39 Correct 533 ms 188532 KB Output is correct
40 Correct 552 ms 188532 KB Output is correct
41 Correct 682 ms 188532 KB Output is correct
42 Correct 676 ms 188532 KB Output is correct
43 Correct 233 ms 188532 KB Output is correct
44 Correct 689 ms 188532 KB Output is correct
45 Correct 679 ms 188532 KB Output is correct
46 Correct 651 ms 188532 KB Output is correct
47 Correct 446 ms 188532 KB Output is correct
48 Correct 445 ms 188532 KB Output is correct
49 Correct 479 ms 188532 KB Output is correct
50 Correct 524 ms 188532 KB Output is correct
51 Correct 500 ms 188532 KB Output is correct
52 Correct 667 ms 420312 KB Output is correct
53 Correct 655 ms 420312 KB Output is correct
54 Correct 790 ms 420312 KB Output is correct
55 Correct 715 ms 420312 KB Output is correct
56 Correct 676 ms 420312 KB Output is correct
57 Correct 679 ms 420312 KB Output is correct
58 Correct 740 ms 420312 KB Output is correct
59 Correct 749 ms 420312 KB Output is correct
60 Correct 748 ms 420312 KB Output is correct
61 Correct 251 ms 420312 KB Output is correct
62 Correct 702 ms 420312 KB Output is correct
63 Correct 801 ms 420312 KB Output is correct
64 Correct 842 ms 420312 KB Output is correct
65 Correct 812 ms 420312 KB Output is correct
66 Correct 723 ms 420312 KB Output is correct
67 Correct 359 ms 420312 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 150 ms 164600 KB Output is correct
2 Correct 149 ms 164636 KB Output is correct
3 Correct 149 ms 164636 KB Output is correct
4 Correct 144 ms 164804 KB Output is correct
5 Correct 145 ms 164804 KB Output is correct
6 Correct 146 ms 164884 KB Output is correct
7 Correct 151 ms 164884 KB Output is correct
8 Correct 147 ms 164884 KB Output is correct
9 Correct 146 ms 164980 KB Output is correct
10 Correct 146 ms 164980 KB Output is correct
11 Correct 148 ms 164980 KB Output is correct
12 Correct 152 ms 164992 KB Output is correct
13 Correct 147 ms 164992 KB Output is correct
14 Correct 150 ms 164992 KB Output is correct
15 Correct 152 ms 164992 KB Output is correct
16 Correct 147 ms 164992 KB Output is correct
17 Correct 149 ms 165028 KB Output is correct
18 Correct 146 ms 165064 KB Output is correct
19 Correct 148 ms 165064 KB Output is correct
20 Correct 149 ms 165128 KB Output is correct
21 Correct 167 ms 165128 KB Output is correct
22 Correct 146 ms 165128 KB Output is correct
23 Correct 167 ms 165128 KB Output is correct
24 Correct 147 ms 165128 KB Output is correct
25 Correct 148 ms 165128 KB Output is correct
26 Correct 146 ms 165128 KB Output is correct
27 Correct 146 ms 165128 KB Output is correct
28 Correct 146 ms 165128 KB Output is correct
29 Correct 160 ms 165172 KB Output is correct
30 Correct 145 ms 165172 KB Output is correct
31 Correct 829 ms 188444 KB Output is correct
32 Correct 334 ms 188444 KB Output is correct
33 Correct 804 ms 188444 KB Output is correct
34 Correct 790 ms 188444 KB Output is correct
35 Correct 846 ms 188532 KB Output is correct
36 Correct 826 ms 188532 KB Output is correct
37 Correct 609 ms 188532 KB Output is correct
38 Correct 631 ms 188532 KB Output is correct
39 Correct 533 ms 188532 KB Output is correct
40 Correct 552 ms 188532 KB Output is correct
41 Correct 682 ms 188532 KB Output is correct
42 Correct 676 ms 188532 KB Output is correct
43 Correct 233 ms 188532 KB Output is correct
44 Correct 689 ms 188532 KB Output is correct
45 Correct 679 ms 188532 KB Output is correct
46 Correct 651 ms 188532 KB Output is correct
47 Correct 446 ms 188532 KB Output is correct
48 Correct 445 ms 188532 KB Output is correct
49 Correct 479 ms 188532 KB Output is correct
50 Correct 524 ms 188532 KB Output is correct
51 Correct 500 ms 188532 KB Output is correct
52 Correct 4231 ms 275152 KB Output is correct
53 Correct 4679 ms 275152 KB Output is correct
54 Correct 3623 ms 308304 KB Output is correct
55 Correct 4196 ms 308304 KB Output is correct
56 Correct 4544 ms 309540 KB Output is correct
57 Correct 4741 ms 323496 KB Output is correct
58 Correct 3232 ms 361056 KB Output is correct
59 Correct 3474 ms 361056 KB Output is correct
60 Correct 3324 ms 367584 KB Output is correct
61 Correct 3794 ms 380244 KB Output is correct
62 Correct 2270 ms 390824 KB Output is correct
63 Correct 2409 ms 404880 KB Output is correct
64 Correct 4926 ms 406448 KB Output is correct
65 Correct 1434 ms 406448 KB Output is correct
66 Execution timed out 5026 ms 420312 KB Time limit exceeded
67 Halted 0 ms 0 KB -