답안 #84173

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
84173 2018-11-13T20:43:10 Z radoslav11 새 집 (APIO18_new_home) C++14
47 / 100
5000 ms 277732 KB
/*
   We will use sweep line to solve the problem. We split the stores into 2 queries: 
   1) Add store i at time a[i]
   2) Remove store i at time b[i] + 1
   We will also have queries in the sweep line. Everything will be sorted by time in increasing order.

   Now to handle queries we will maintain K sets - the available positions of j-type stores. Then if A and B are two consecutive stores, the closest elements to all positions in [A; B] are A or B.
   Then let's have a two segment trees wtih sets - one for closest elements to the left and one for closest elements to the right. Now addition of store with type X will be done like that:

   1) Let A <= X <= B and A and B are the closest stores of the same type. 
   2) We remove the interval [A; B] from the DS.
   3) We add the intervals [A; X] and [X; B].

   Adding or removing an interval is done by finding the middle position and then concidering the two ranges - [L; Mid] and [Mid + 1; R].

   The complexity will be O(N * log N * log N).

   As sets are slow, we will compress the input in each segment tree node beforehand and then use priority queue instead of sets.

   Unfortunately the above data structure was too slow. So my second idea is to change the data structure to two simple treaps and do binary search on them. 
   The complexity will be O(N log N) this way. 

   Again unfortunately the treap solution was too slow (it got 47). So the third idea is to make the data structure offline. Then the treap can be replaced with segment tree.
   */

#include <bits/stdc++.h>
#define endl '\n'

//#pragma GCC optimize ("O3")
//#pragma GCC target ("sse4")

#define SZ(x) ((int)x.size())
#define ALL(V) V.begin(), V.end()
#define L_B lower_bound
#define U_B upper_bound

using namespace std;
template<class T, class T2> inline int chkmax(T &x, const T2 &y) { return x < y ? x = y, 1 : 0; }
template<class T, class T2> inline int chkmin(T &x, const T2 &y) { return x > y ? x = y, 1 : 0; }
const int MAXN = (1 << 21);
const int inf = (int)1e9 + 42;

vector<pair<int, int> > Li, Li2;

struct segment_tree_L
{
	vector<pair<int, int> > a;

	struct node
	{
		int mx;
		node() { mx = -inf; }
		node(int val) { mx = val; }
	};

	node temp, broken;

	node merge(node l, node r)
	{
		temp.mx = max(l.mx, r.mx);
		return temp;
	}

	int bound_L[4 * MAXN], bound_R[4 * MAXN];

	node tr[4 * MAXN];
	int CNT[MAXN];

	void init(int l, int r, int idx)
	{
		bound_L[idx] = l;
		bound_R[idx] = r;
		if(l == r)
		{
			CNT[l] = 0;
			tr[idx] = node();
			return;
		}

		int mid = (l + r) >> 1;
		init(l, mid, 2 * idx + 1);
		init(mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void add(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]++;
			tr[idx].mx = CNT[l] ? a[l].second : -inf;
			return;
		}

		int mid = (l + r) >> 1;
		add(pos, l, mid, 2 * idx + 1);
		add(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}
	
	void rem(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]--;
			tr[idx].mx = CNT[l] ? a[l].second : -inf;
			return;
		}

		int mid = (l + r) >> 1;
		rem(pos, l, mid, 2 * idx + 1);
		rem(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void get_nodes(int qL, int qR, int l, int r, int idx, vector<int> &li)
	{
		if(l > qR || r < qL) return;
		if(qL <= l && r <= qR)
		{
			li.push_back(idx);
			return;
		}

		int mid = (l + r) >> 1;
		get_nodes(qL, qR, l, mid, 2 * idx + 1, li);
		get_nodes(qL, qR, mid + 1, r, 2 * idx + 2, li);
	}

	int get_right(int l, int r, int idx, int X)
	{
		if(l == r) return l;
		int mid = (l + r) >> 1;
		if(tr[2 * idx + 1].mx >= X) return get_right(l, mid, 2 * idx + 1, X);
		else return get_right(mid + 1, r, 2 * idx + 2, X);
	}

	int N;

	void init()
	{
		N = SZ(Li);
		a = Li;
		init(0, N - 1, 0);
	}

	void add_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(l, r)) - a.begin();
		add(pos, 0, N - 1, 0);
	}

	void rem_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(l, r)) - a.begin();
		rem(pos, 0, N - 1, 0);
	}

	int query(int x)
	{
		vector<int> li;
		int Ren = L_B(ALL(a), make_pair(x, 10 + inf)) - a.begin() - 1; 
		get_nodes(0, Ren, 0, N - 1, 0, li);

		for(auto it: li)
			if(tr[it].mx >= x)
				return x - a[get_right(bound_L[it], bound_R[it], it, x)].first;

		return -inf;
	}

} L;

struct segment_tree_R
{
	vector<pair<int, int> > a;

	struct node
	{
		int mn;
		node() { mn = inf; }
		node(int val) { mn = val; }
	};

	node temp, broken;

	node merge(node l, node r)
	{
		temp.mn = min(l.mn, r.mn);
		return temp;
	}

	int bound_L[4 * MAXN], bound_R[4 * MAXN];

	node tr[4 * MAXN];
	int CNT[MAXN];

	void init(int l, int r, int idx)
	{
		bound_L[idx] = l;
		bound_R[idx] = r;
		if(l == r)
		{
			CNT[l] = 0;
			tr[idx] = node();
			return;
		}

		int mid = (l + r) >> 1;
		init(l, mid, 2 * idx + 1);
		init(mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void add(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]++;
			tr[idx].mn = CNT[l] ? a[l].second : inf;
			return;
		}

		int mid = (l + r) >> 1;
		add(pos, l, mid, 2 * idx + 1);
		add(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}
	
	void rem(int pos, int l, int r, int idx)
	{
		if(l > pos || r < pos)
			return;

		if(l == r && l == pos)
		{
			CNT[l]--;
			tr[idx].mn = CNT[l] ? a[l].second : inf;
			return;
		}

		int mid = (l + r) >> 1;
		rem(pos, l, mid, 2 * idx + 1);
		rem(pos, mid + 1, r, 2 * idx + 2);

		tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
	}

	void get_nodes(int qL, int qR, int l, int r, int idx, vector<int> &li)
	{
		if(l > qR || r < qL) return;
		if(qL <= l && r <= qR)
		{
			li.push_back(idx);
			return;
		}

		int mid = (l + r) >> 1;
		get_nodes(qL, qR, l, mid, 2 * idx + 1, li);
		get_nodes(qL, qR, mid + 1, r, 2 * idx + 2, li);
	}

	int get_left(int l, int r, int idx, int X)
	{
		if(l == r) return l;
		int mid = (l + r) >> 1;
		if(tr[2 * idx + 2].mn <= X) return get_left(mid + 1, r, 2 * idx + 2, X);
		else return get_left(l, mid, 2 * idx + 1, X);
	}

	int N;

	void init()
	{
		N = SZ(Li);
		a = Li2;
		
		init(0, N - 1, 0);
	}

	void add_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(r, l)) - a.begin();
		add(pos, 0, N - 1, 0);
	}

	void rem_interval(int l, int r)
	{
		int pos = L_B(ALL(a), make_pair(r, l)) - a.begin();
		rem(pos, 0, N - 1, 0);
	}

	int query(int x)
	{
		vector<int> li;
		int Lst = L_B(ALL(a), make_pair(x, -inf - 10)) - a.begin(); 
		get_nodes(Lst, N - 1, 0, N - 1, 0, li);

		reverse(li.begin(), li.end());
		for(auto it: li)
			if(tr[it].mn <= x)
				return a[get_left(bound_L[it], bound_R[it], it, x)].first - x;

		return -inf;
	}

} R;

int read_int();

int n, k, q;

struct event
{
	int type;
	int T, x, tp, idx;

	event() { type = tp = T = x = 0; idx = -1; }
	event(int t, int Tm, int X, int i, int pp = -1)
	{
		type = t;
		T = Tm;
		x = X;
		idx = i;
		tp = pp;
	}
};

bool cmp(event a, event b) 
{ 
	if(a.T != b.T) return a.T < b.T; 
	return a.type < b.type;
}

vector<event> Ev;
int answer[MAXN];

void read()
{
	n = read_int();
	k = read_int();
	q = read_int();

	for(int i = 0; i < n; i++)
	{
		int x, t, a, b;
		x = read_int();
		t = read_int();
		a = read_int();
		b = read_int();

		Ev.push_back(event(0, a, x, i, t));
		Ev.push_back(event(1, b + 1, x, i, t));
	}

	for(int i = 0; i < q; i++)
	{
		int x, t;
		x = read_int();
		t = read_int();
		Ev.push_back(event(2, t, x, i));
	}
}

set<pair<int, int> > ST[MAXN];

void add_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) L.add_interval(l, mid);
	if(mid + 1 <= r) R.add_interval(mid + 1, r);
}

void rem_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) L.rem_interval(l, mid);
	if(mid + 1 <= r) R.rem_interval(mid + 1, r);
}

int query(int x) { return max(L.query(x), R.query(x)); }

void add(int y, int x, int i)
{
	auto aft = ST[y].L_B({x, i});
	auto bef = prev(aft);

	ST[y].insert({x, i});

	rem_interval(bef->first, aft->first);
	add_interval(bef->first, x);
	add_interval(x, aft->first);
}

void rem(int y, int x, int i)
{
	ST[y].erase({x, i});

	auto aft = ST[y].L_B({x, i});
	auto bef = prev(aft);

	rem_interval(bef->first, x);
	rem_interval(x, aft->first);
	add_interval(bef->first, aft->first);
}

void prep_add_interval(int l, int r)
{
	int mid = (l + r) / 2;
	if(l <= mid) Li.push_back({l, mid});
	if(mid + 1 <= r) Li2.push_back({r, mid + 1});
}

void prep_add(int y, int x, int i)
{
	auto aft = ST[y].L_B({x, i});
	auto bef = prev(aft);

	ST[y].insert({x, i});

	prep_add_interval(bef->first, x);
	prep_add_interval(x, aft->first);
}

void prep_rem(int y, int x, int i)
{
	ST[y].erase({x, i});

	auto aft = ST[y].L_B({x, i});
	auto bef = prev(aft);

	prep_add_interval(bef->first, aft->first);
}

void solve()
{
	for(int i = 1; i <= k; i++)
		ST[i].insert({-inf, -1}), ST[i].insert({inf, -1});
	
	prep_add_interval(-inf, inf);

	sort(ALL(Ev), cmp);
	
	for(auto it: Ev)
		if(it.type == 0)
			prep_add(it.tp, it.x, it.idx);
		else if(it.type == 1)
			prep_rem(it.tp, it.x, it.idx);

	sort(ALL(Li));
	Li.erase(unique(ALL(Li)), Li.end());
	
	sort(ALL(Li2));
	Li2.erase(unique(ALL(Li2)), Li2.end());
	
	L.init();
	R.init();
	
	for(int i = 0; i < k; i++)
		add_interval(-inf, inf);

	for(auto it: Ev)
		if(it.type == 0)
			add(it.tp, it.x, it.idx);
		else if(it.type == 1)
			rem(it.tp, it.x, it.idx);
		else 
			answer[it.idx] = query(it.x);

	for(int i = 0; i < q; i++)
		if(answer[i] < (int)2e8) cout << answer[i] << endl;
		else cout << -1 << endl;
}

int main()
{
	ios_base::sync_with_stdio(false);
	cin.tie(NULL);

	read();
	solve();
	return 0;
}

const int maxl = 100000;
char buff[maxl];
int ret_int, pos_buff = 0;

void next_char() { if(++pos_buff == maxl) fread(buff, 1, maxl, stdin), pos_buff = 0; }

int read_int()
{
	ret_int = 0;
	for(; buff[pos_buff] < '0' || buff[pos_buff] > '9'; next_char());
	for(; buff[pos_buff] >= '0' && buff[pos_buff] <= '9'; next_char())
		ret_int = ret_int * 10 + buff[pos_buff] - '0';
	return ret_int;
}

Compilation message

new_home.cpp: In function 'void next_char()':
new_home.cpp:503:70: warning: ignoring return value of 'size_t fread(void*, size_t, size_t, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void next_char() { if(++pos_buff == maxl) fread(buff, 1, maxl, stdin), pos_buff = 0; }
                                           ~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 145 ms 164632 KB Output is correct
2 Correct 144 ms 164732 KB Output is correct
3 Correct 147 ms 164732 KB Output is correct
4 Correct 139 ms 164732 KB Output is correct
5 Correct 148 ms 164732 KB Output is correct
6 Correct 150 ms 165012 KB Output is correct
7 Correct 154 ms 165012 KB Output is correct
8 Correct 149 ms 165012 KB Output is correct
9 Correct 148 ms 165012 KB Output is correct
10 Correct 139 ms 165012 KB Output is correct
11 Correct 151 ms 165028 KB Output is correct
12 Correct 148 ms 165044 KB Output is correct
13 Correct 146 ms 165044 KB Output is correct
14 Correct 146 ms 165044 KB Output is correct
15 Correct 149 ms 165044 KB Output is correct
16 Correct 148 ms 165064 KB Output is correct
17 Correct 151 ms 165064 KB Output is correct
18 Correct 142 ms 165064 KB Output is correct
19 Correct 147 ms 165064 KB Output is correct
20 Correct 142 ms 165072 KB Output is correct
21 Correct 138 ms 165072 KB Output is correct
22 Correct 144 ms 165160 KB Output is correct
23 Correct 139 ms 165160 KB Output is correct
24 Correct 139 ms 165160 KB Output is correct
25 Correct 142 ms 165160 KB Output is correct
26 Correct 149 ms 165160 KB Output is correct
27 Correct 140 ms 165160 KB Output is correct
28 Correct 147 ms 165160 KB Output is correct
29 Correct 146 ms 165160 KB Output is correct
30 Correct 146 ms 165160 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 145 ms 164632 KB Output is correct
2 Correct 144 ms 164732 KB Output is correct
3 Correct 147 ms 164732 KB Output is correct
4 Correct 139 ms 164732 KB Output is correct
5 Correct 148 ms 164732 KB Output is correct
6 Correct 150 ms 165012 KB Output is correct
7 Correct 154 ms 165012 KB Output is correct
8 Correct 149 ms 165012 KB Output is correct
9 Correct 148 ms 165012 KB Output is correct
10 Correct 139 ms 165012 KB Output is correct
11 Correct 151 ms 165028 KB Output is correct
12 Correct 148 ms 165044 KB Output is correct
13 Correct 146 ms 165044 KB Output is correct
14 Correct 146 ms 165044 KB Output is correct
15 Correct 149 ms 165044 KB Output is correct
16 Correct 148 ms 165064 KB Output is correct
17 Correct 151 ms 165064 KB Output is correct
18 Correct 142 ms 165064 KB Output is correct
19 Correct 147 ms 165064 KB Output is correct
20 Correct 142 ms 165072 KB Output is correct
21 Correct 138 ms 165072 KB Output is correct
22 Correct 144 ms 165160 KB Output is correct
23 Correct 139 ms 165160 KB Output is correct
24 Correct 139 ms 165160 KB Output is correct
25 Correct 142 ms 165160 KB Output is correct
26 Correct 149 ms 165160 KB Output is correct
27 Correct 140 ms 165160 KB Output is correct
28 Correct 147 ms 165160 KB Output is correct
29 Correct 146 ms 165160 KB Output is correct
30 Correct 146 ms 165160 KB Output is correct
31 Correct 881 ms 187080 KB Output is correct
32 Correct 352 ms 187080 KB Output is correct
33 Correct 856 ms 187080 KB Output is correct
34 Correct 847 ms 187080 KB Output is correct
35 Correct 899 ms 187136 KB Output is correct
36 Correct 877 ms 187136 KB Output is correct
37 Correct 700 ms 187136 KB Output is correct
38 Correct 702 ms 187136 KB Output is correct
39 Correct 606 ms 187136 KB Output is correct
40 Correct 626 ms 187136 KB Output is correct
41 Correct 757 ms 187136 KB Output is correct
42 Correct 755 ms 187136 KB Output is correct
43 Correct 234 ms 187136 KB Output is correct
44 Correct 770 ms 187136 KB Output is correct
45 Correct 757 ms 187136 KB Output is correct
46 Correct 717 ms 187136 KB Output is correct
47 Correct 506 ms 187136 KB Output is correct
48 Correct 504 ms 187136 KB Output is correct
49 Correct 540 ms 187136 KB Output is correct
50 Correct 586 ms 187136 KB Output is correct
51 Correct 563 ms 187136 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4722 ms 269632 KB Output is correct
2 Execution timed out 5108 ms 277500 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Execution timed out 5107 ms 277732 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 145 ms 164632 KB Output is correct
2 Correct 144 ms 164732 KB Output is correct
3 Correct 147 ms 164732 KB Output is correct
4 Correct 139 ms 164732 KB Output is correct
5 Correct 148 ms 164732 KB Output is correct
6 Correct 150 ms 165012 KB Output is correct
7 Correct 154 ms 165012 KB Output is correct
8 Correct 149 ms 165012 KB Output is correct
9 Correct 148 ms 165012 KB Output is correct
10 Correct 139 ms 165012 KB Output is correct
11 Correct 151 ms 165028 KB Output is correct
12 Correct 148 ms 165044 KB Output is correct
13 Correct 146 ms 165044 KB Output is correct
14 Correct 146 ms 165044 KB Output is correct
15 Correct 149 ms 165044 KB Output is correct
16 Correct 148 ms 165064 KB Output is correct
17 Correct 151 ms 165064 KB Output is correct
18 Correct 142 ms 165064 KB Output is correct
19 Correct 147 ms 165064 KB Output is correct
20 Correct 142 ms 165072 KB Output is correct
21 Correct 138 ms 165072 KB Output is correct
22 Correct 144 ms 165160 KB Output is correct
23 Correct 139 ms 165160 KB Output is correct
24 Correct 139 ms 165160 KB Output is correct
25 Correct 142 ms 165160 KB Output is correct
26 Correct 149 ms 165160 KB Output is correct
27 Correct 140 ms 165160 KB Output is correct
28 Correct 147 ms 165160 KB Output is correct
29 Correct 146 ms 165160 KB Output is correct
30 Correct 146 ms 165160 KB Output is correct
31 Correct 881 ms 187080 KB Output is correct
32 Correct 352 ms 187080 KB Output is correct
33 Correct 856 ms 187080 KB Output is correct
34 Correct 847 ms 187080 KB Output is correct
35 Correct 899 ms 187136 KB Output is correct
36 Correct 877 ms 187136 KB Output is correct
37 Correct 700 ms 187136 KB Output is correct
38 Correct 702 ms 187136 KB Output is correct
39 Correct 606 ms 187136 KB Output is correct
40 Correct 626 ms 187136 KB Output is correct
41 Correct 757 ms 187136 KB Output is correct
42 Correct 755 ms 187136 KB Output is correct
43 Correct 234 ms 187136 KB Output is correct
44 Correct 770 ms 187136 KB Output is correct
45 Correct 757 ms 187136 KB Output is correct
46 Correct 717 ms 187136 KB Output is correct
47 Correct 506 ms 187136 KB Output is correct
48 Correct 504 ms 187136 KB Output is correct
49 Correct 540 ms 187136 KB Output is correct
50 Correct 586 ms 187136 KB Output is correct
51 Correct 563 ms 187136 KB Output is correct
52 Correct 754 ms 277732 KB Output is correct
53 Correct 785 ms 277732 KB Output is correct
54 Correct 812 ms 277732 KB Output is correct
55 Correct 757 ms 277732 KB Output is correct
56 Correct 762 ms 277732 KB Output is correct
57 Correct 768 ms 277732 KB Output is correct
58 Correct 751 ms 277732 KB Output is correct
59 Correct 736 ms 277732 KB Output is correct
60 Correct 759 ms 277732 KB Output is correct
61 Correct 252 ms 277732 KB Output is correct
62 Correct 754 ms 277732 KB Output is correct
63 Correct 826 ms 277732 KB Output is correct
64 Correct 821 ms 277732 KB Output is correct
65 Correct 813 ms 277732 KB Output is correct
66 Correct 823 ms 277732 KB Output is correct
67 Correct 443 ms 277732 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 145 ms 164632 KB Output is correct
2 Correct 144 ms 164732 KB Output is correct
3 Correct 147 ms 164732 KB Output is correct
4 Correct 139 ms 164732 KB Output is correct
5 Correct 148 ms 164732 KB Output is correct
6 Correct 150 ms 165012 KB Output is correct
7 Correct 154 ms 165012 KB Output is correct
8 Correct 149 ms 165012 KB Output is correct
9 Correct 148 ms 165012 KB Output is correct
10 Correct 139 ms 165012 KB Output is correct
11 Correct 151 ms 165028 KB Output is correct
12 Correct 148 ms 165044 KB Output is correct
13 Correct 146 ms 165044 KB Output is correct
14 Correct 146 ms 165044 KB Output is correct
15 Correct 149 ms 165044 KB Output is correct
16 Correct 148 ms 165064 KB Output is correct
17 Correct 151 ms 165064 KB Output is correct
18 Correct 142 ms 165064 KB Output is correct
19 Correct 147 ms 165064 KB Output is correct
20 Correct 142 ms 165072 KB Output is correct
21 Correct 138 ms 165072 KB Output is correct
22 Correct 144 ms 165160 KB Output is correct
23 Correct 139 ms 165160 KB Output is correct
24 Correct 139 ms 165160 KB Output is correct
25 Correct 142 ms 165160 KB Output is correct
26 Correct 149 ms 165160 KB Output is correct
27 Correct 140 ms 165160 KB Output is correct
28 Correct 147 ms 165160 KB Output is correct
29 Correct 146 ms 165160 KB Output is correct
30 Correct 146 ms 165160 KB Output is correct
31 Correct 881 ms 187080 KB Output is correct
32 Correct 352 ms 187080 KB Output is correct
33 Correct 856 ms 187080 KB Output is correct
34 Correct 847 ms 187080 KB Output is correct
35 Correct 899 ms 187136 KB Output is correct
36 Correct 877 ms 187136 KB Output is correct
37 Correct 700 ms 187136 KB Output is correct
38 Correct 702 ms 187136 KB Output is correct
39 Correct 606 ms 187136 KB Output is correct
40 Correct 626 ms 187136 KB Output is correct
41 Correct 757 ms 187136 KB Output is correct
42 Correct 755 ms 187136 KB Output is correct
43 Correct 234 ms 187136 KB Output is correct
44 Correct 770 ms 187136 KB Output is correct
45 Correct 757 ms 187136 KB Output is correct
46 Correct 717 ms 187136 KB Output is correct
47 Correct 506 ms 187136 KB Output is correct
48 Correct 504 ms 187136 KB Output is correct
49 Correct 540 ms 187136 KB Output is correct
50 Correct 586 ms 187136 KB Output is correct
51 Correct 563 ms 187136 KB Output is correct
52 Correct 4722 ms 269632 KB Output is correct
53 Execution timed out 5108 ms 277500 KB Time limit exceeded
54 Halted 0 ms 0 KB -