/*
We will use sweep line to solve the problem. We split the stores into 2 queries:
1) Add store i at time a[i]
2) Remove store i at time b[i] + 1
We will also have queries in the sweep line. Everything will be sorted by time in increasing order.
Now to handle queries we will maintain K sets - the available positions of j-type stores. Then if A and B are two consecutive stores, the closest elements to all positions in [A; B] are A or B.
Then let's have a two segment trees wtih sets - one for closest elements to the left and one for closest elements to the right. Now addition of store with type X will be done like that:
1) Let A <= X <= B and A and B are the closest stores of the same type.
2) We remove the interval [A; B] from the DS.
3) We add the intervals [A; X] and [X; B].
Adding or removing an interval is done by finding the middle position and then concidering the two ranges - [L; Mid] and [Mid + 1; R].
The complexity will be O(N * log N * log N).
As sets are slow, we will compress the input in each segment tree node beforehand and then use priority queue instead of sets.
Unfortunately the above data structure was too slow. So my second idea is to change the data structure to two simple treaps and do binary search on them.
The complexity will be O(N log N) this way.
Again unfortunately the treap solution was too slow (it got 47). So the third idea is to make the data structure offline. Then the treap can be replaced with segment tree.
*/
#include <bits/stdc++.h>
#define endl '\n'
//#pragma GCC optimize ("O3")
//#pragma GCC target ("sse4")
#define SZ(x) ((int)x.size())
#define ALL(V) V.begin(), V.end()
#define L_B lower_bound
#define U_B upper_bound
using namespace std;
template<class T, class T2> inline int chkmax(T &x, const T2 &y) { return x < y ? x = y, 1 : 0; }
template<class T, class T2> inline int chkmin(T &x, const T2 &y) { return x > y ? x = y, 1 : 0; }
const int MAXN = (1 << 21);
const int inf = (int)1e9 + 42;
vector<pair<int, int> > Li;
struct segment_tree_L
{
vector<pair<int, int> > a;
struct node
{
int mx;
node() { mx = -inf; }
node(int val) { mx = val; }
};
node temp, broken;
node merge(node l, node r)
{
temp.mx = max(l.mx, r.mx);
return temp;
}
int bound_L[4 * MAXN], bound_R[4 * MAXN];
node tr[4 * MAXN];
int CNT[MAXN];
void init(int l, int r, int idx)
{
bound_L[idx] = l;
bound_R[idx] = r;
if(l == r)
{
CNT[l] = 0;
tr[idx] = node();
return;
}
int mid = (l + r) >> 1;
init(l, mid, 2 * idx + 1);
init(mid + 1, r, 2 * idx + 2);
tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
}
void add(int pos, int l, int r, int idx)
{
if(l > pos || r < pos)
return;
if(l == r && l == pos)
{
CNT[l]++;
tr[idx].mx = CNT[l] ? a[l].second : -inf;
return;
}
int mid = (l + r) >> 1;
add(pos, l, mid, 2 * idx + 1);
add(pos, mid + 1, r, 2 * idx + 2);
tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
}
void rem(int pos, int l, int r, int idx)
{
if(l > pos || r < pos)
return;
if(l == r && l == pos)
{
CNT[l]--;
tr[idx].mx = CNT[l] ? a[l].second : -inf;
return;
}
int mid = (l + r) >> 1;
rem(pos, l, mid, 2 * idx + 1);
rem(pos, mid + 1, r, 2 * idx + 2);
tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
}
void get_nodes(int qL, int qR, int l, int r, int idx, vector<int> &li)
{
if(l > qR || r < qL) return;
if(qL <= l && r <= qR)
{
li.push_back(idx);
return;
}
int mid = (l + r) >> 1;
get_nodes(qL, qR, l, mid, 2 * idx + 1, li);
get_nodes(qL, qR, mid + 1, r, 2 * idx + 2, li);
}
int get_right(int l, int r, int idx, int X)
{
if(l == r) return l;
int mid = (l + r) >> 1;
if(tr[2 * idx + 1].mx >= X) return get_right(l, mid, 2 * idx + 1, X);
else return get_right(mid + 1, r, 2 * idx + 2, X);
}
int N;
void init()
{
N = SZ(Li);
a = Li;
init(0, N - 1, 0);
}
void add_interval(int l, int r)
{
int pos = L_B(ALL(a), make_pair(l, r)) - a.begin();
add(pos, 0, N - 1, 0);
}
void rem_interval(int l, int r)
{
int pos = L_B(ALL(a), make_pair(l, r)) - a.begin();
rem(pos, 0, N - 1, 0);
}
int query(int x)
{
vector<int> li;
int Ren = L_B(ALL(a), make_pair(x, 10 + inf)) - a.begin() - 1;
get_nodes(0, Ren, 0, N - 1, 0, li);
for(auto it: li)
if(tr[it].mx >= x)
return x - a[get_right(bound_L[it], bound_R[it], it, x)].first;
return -inf;
}
} L;
struct segment_tree_R
{
vector<pair<int, int> > a;
struct node
{
int mn;
node() { mn = inf; }
node(int val) { mn = val; }
};
node temp, broken;
node merge(node l, node r)
{
temp.mn = min(l.mn, r.mn);
return temp;
}
int bound_L[4 * MAXN], bound_R[4 * MAXN];
node tr[4 * MAXN];
int CNT[MAXN];
void init(int l, int r, int idx)
{
bound_L[idx] = l;
bound_R[idx] = r;
if(l == r)
{
CNT[l] = 0;
tr[idx] = node();
return;
}
int mid = (l + r) >> 1;
init(l, mid, 2 * idx + 1);
init(mid + 1, r, 2 * idx + 2);
tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
}
void add(int pos, int l, int r, int idx)
{
if(l > pos || r < pos)
return;
if(l == r && l == pos)
{
CNT[l]++;
tr[idx].mn = CNT[l] ? a[l].second : inf;
return;
}
int mid = (l + r) >> 1;
add(pos, l, mid, 2 * idx + 1);
add(pos, mid + 1, r, 2 * idx + 2);
tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
}
void rem(int pos, int l, int r, int idx)
{
if(l > pos || r < pos)
return;
if(l == r && l == pos)
{
CNT[l]--;
tr[idx].mn = CNT[l] ? a[l].second : inf;
return;
}
int mid = (l + r) >> 1;
rem(pos, l, mid, 2 * idx + 1);
rem(pos, mid + 1, r, 2 * idx + 2);
tr[idx] = merge(tr[2 * idx + 1], tr[2 * idx + 2]);
}
void get_nodes(int qL, int qR, int l, int r, int idx, vector<int> &li)
{
if(l > qR || r < qL) return;
if(qL <= l && r <= qR)
{
li.push_back(idx);
return;
}
int mid = (l + r) >> 1;
get_nodes(qL, qR, l, mid, 2 * idx + 1, li);
get_nodes(qL, qR, mid + 1, r, 2 * idx + 2, li);
}
int get_left(int l, int r, int idx, int X)
{
if(l == r) return l;
int mid = (l + r) >> 1;
if(tr[2 * idx + 2].mn <= X) return get_left(mid + 1, r, 2 * idx + 2, X);
else return get_left(l, mid, 2 * idx + 1, X);
}
int N;
void init()
{
N = SZ(Li);
a = Li;
for(auto &it: a) swap(it.first, it.second);
sort(ALL(a));
init(0, N - 1, 0);
}
void add_interval(int l, int r)
{
int pos = L_B(ALL(a), make_pair(r, l)) - a.begin();
add(pos, 0, N - 1, 0);
}
void rem_interval(int l, int r)
{
int pos = L_B(ALL(a), make_pair(r, l)) - a.begin();
rem(pos, 0, N - 1, 0);
}
int query(int x)
{
vector<int> li;
int Lst = L_B(ALL(a), make_pair(x, -inf - 10)) - a.begin();
get_nodes(Lst, N - 1, 0, N - 1, 0, li);
reverse(li.begin(), li.end());
for(auto it: li)
if(tr[it].mn <= x)
return a[get_left(bound_L[it], bound_R[it], it, x)].first - x;
return -inf;
}
} R;
int read_int();
int n, k, q;
struct event
{
int type;
int T, x, tp, idx;
event() { type = tp = T = x = 0; idx = -1; }
event(int t, int Tm, int X, int i, int pp = -1)
{
type = t;
T = Tm;
x = X;
idx = i;
tp = pp;
}
};
bool cmp(event a, event b)
{
if(a.T != b.T) return a.T < b.T;
return a.type < b.type;
}
vector<event> Ev;
int answer[MAXN];
void read()
{
n = read_int();
k = read_int();
q = read_int();
for(int i = 0; i < n; i++)
{
int x, t, a, b;
x = read_int();
t = read_int();
a = read_int();
b = read_int();
Ev.push_back(event(0, a, x, i, t));
Ev.push_back(event(1, b + 1, x, i, t));
}
for(int i = 0; i < q; i++)
{
int x, t;
x = read_int();
t = read_int();
Ev.push_back(event(2, t, x, i));
}
}
set<pair<int, int> > ST[MAXN];
void add_interval(int l, int r)
{
int mid = (l + r) / 2;
if(l <= mid) L.add_interval(l, mid);
if(mid + 1 <= r) R.add_interval(mid + 1, r);
}
void rem_interval(int l, int r)
{
int mid = (l + r) / 2;
if(l <= mid) L.rem_interval(l, mid);
if(mid + 1 <= r) R.rem_interval(mid + 1, r);
}
int query(int x) { return max(L.query(x), R.query(x)); }
void add(int y, int x, int i)
{
auto aft = ST[y].L_B({x, i});
auto bef = prev(aft);
ST[y].insert({x, i});
rem_interval(bef->first, aft->first);
add_interval(bef->first, x);
add_interval(x, aft->first);
}
void rem(int y, int x, int i)
{
ST[y].erase({x, i});
auto aft = ST[y].L_B({x, i});
auto bef = prev(aft);
rem_interval(bef->first, x);
rem_interval(x, aft->first);
add_interval(bef->first, aft->first);
}
void prep_add_interval(int l, int r)
{
int mid = (l + r) / 2;
if(l <= mid) Li.push_back({l, mid});
if(mid + 1 <= r) Li.push_back({mid + 1, r});
}
void prep_add(int y, int x, int i)
{
auto aft = ST[y].L_B({x, i});
auto bef = prev(aft);
ST[y].insert({x, i});
prep_add_interval(bef->first, x);
prep_add_interval(x, aft->first);
}
void prep_rem(int y, int x, int i)
{
ST[y].erase({x, i});
auto aft = ST[y].L_B({x, i});
auto bef = prev(aft);
prep_add_interval(bef->first, aft->first);
}
void solve()
{
for(int i = 1; i <= k; i++)
ST[i].insert({-inf, -1}), ST[i].insert({inf, -1});
prep_add_interval(-inf, inf);
sort(ALL(Ev), cmp);
for(auto it: Ev)
if(it.type == 0)
prep_add(it.tp, it.x, it.idx);
else if(it.type == 1)
prep_rem(it.tp, it.x, it.idx);
sort(ALL(Li));
Li.erase(unique(ALL(Li)), Li.end());
L.init();
R.init();
for(int i = 0; i < k; i++)
add_interval(-inf, inf);
for(auto it: Ev)
if(it.type == 0)
add(it.tp, it.x, it.idx);
else if(it.type == 1)
rem(it.tp, it.x, it.idx);
else
answer[it.idx] = query(it.x);
for(int i = 0; i < q; i++)
if(answer[i] < (int)2e8) cout << answer[i] << endl;
else cout << -1 << endl;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
read();
solve();
return 0;
}
const int maxl = 100000;
char buff[maxl];
int ret_int, pos_buff = 0;
void next_char() { if(++pos_buff == maxl) fread(buff, 1, maxl, stdin), pos_buff = 0; }
int read_int()
{
ret_int = 0;
for(; buff[pos_buff] < '0' || buff[pos_buff] > '9'; next_char());
for(; buff[pos_buff] >= '0' && buff[pos_buff] <= '9'; next_char())
ret_int = ret_int * 10 + buff[pos_buff] - '0';
return ret_int;
}
Compilation message
new_home.cpp: In function 'void next_char()':
new_home.cpp:504:70: warning: ignoring return value of 'size_t fread(void*, size_t, size_t, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
void next_char() { if(++pos_buff == maxl) fread(buff, 1, maxl, stdin), pos_buff = 0; }
~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
145 ms |
164728 KB |
Output is correct |
2 |
Correct |
140 ms |
164728 KB |
Output is correct |
3 |
Correct |
147 ms |
164728 KB |
Output is correct |
4 |
Correct |
137 ms |
164728 KB |
Output is correct |
5 |
Correct |
143 ms |
164908 KB |
Output is correct |
6 |
Correct |
145 ms |
165112 KB |
Output is correct |
7 |
Correct |
153 ms |
165112 KB |
Output is correct |
8 |
Correct |
148 ms |
165112 KB |
Output is correct |
9 |
Correct |
145 ms |
165112 KB |
Output is correct |
10 |
Correct |
144 ms |
165112 KB |
Output is correct |
11 |
Correct |
143 ms |
165112 KB |
Output is correct |
12 |
Correct |
146 ms |
165112 KB |
Output is correct |
13 |
Correct |
141 ms |
165112 KB |
Output is correct |
14 |
Correct |
147 ms |
165112 KB |
Output is correct |
15 |
Correct |
144 ms |
165112 KB |
Output is correct |
16 |
Correct |
147 ms |
165112 KB |
Output is correct |
17 |
Correct |
146 ms |
165112 KB |
Output is correct |
18 |
Correct |
138 ms |
165112 KB |
Output is correct |
19 |
Correct |
140 ms |
165136 KB |
Output is correct |
20 |
Correct |
149 ms |
165136 KB |
Output is correct |
21 |
Correct |
138 ms |
165136 KB |
Output is correct |
22 |
Correct |
148 ms |
165136 KB |
Output is correct |
23 |
Correct |
143 ms |
165136 KB |
Output is correct |
24 |
Correct |
143 ms |
165136 KB |
Output is correct |
25 |
Correct |
151 ms |
165136 KB |
Output is correct |
26 |
Correct |
146 ms |
165136 KB |
Output is correct |
27 |
Correct |
146 ms |
165136 KB |
Output is correct |
28 |
Correct |
149 ms |
165208 KB |
Output is correct |
29 |
Correct |
147 ms |
165208 KB |
Output is correct |
30 |
Correct |
146 ms |
165208 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
145 ms |
164728 KB |
Output is correct |
2 |
Correct |
140 ms |
164728 KB |
Output is correct |
3 |
Correct |
147 ms |
164728 KB |
Output is correct |
4 |
Correct |
137 ms |
164728 KB |
Output is correct |
5 |
Correct |
143 ms |
164908 KB |
Output is correct |
6 |
Correct |
145 ms |
165112 KB |
Output is correct |
7 |
Correct |
153 ms |
165112 KB |
Output is correct |
8 |
Correct |
148 ms |
165112 KB |
Output is correct |
9 |
Correct |
145 ms |
165112 KB |
Output is correct |
10 |
Correct |
144 ms |
165112 KB |
Output is correct |
11 |
Correct |
143 ms |
165112 KB |
Output is correct |
12 |
Correct |
146 ms |
165112 KB |
Output is correct |
13 |
Correct |
141 ms |
165112 KB |
Output is correct |
14 |
Correct |
147 ms |
165112 KB |
Output is correct |
15 |
Correct |
144 ms |
165112 KB |
Output is correct |
16 |
Correct |
147 ms |
165112 KB |
Output is correct |
17 |
Correct |
146 ms |
165112 KB |
Output is correct |
18 |
Correct |
138 ms |
165112 KB |
Output is correct |
19 |
Correct |
140 ms |
165136 KB |
Output is correct |
20 |
Correct |
149 ms |
165136 KB |
Output is correct |
21 |
Correct |
138 ms |
165136 KB |
Output is correct |
22 |
Correct |
148 ms |
165136 KB |
Output is correct |
23 |
Correct |
143 ms |
165136 KB |
Output is correct |
24 |
Correct |
143 ms |
165136 KB |
Output is correct |
25 |
Correct |
151 ms |
165136 KB |
Output is correct |
26 |
Correct |
146 ms |
165136 KB |
Output is correct |
27 |
Correct |
146 ms |
165136 KB |
Output is correct |
28 |
Correct |
149 ms |
165208 KB |
Output is correct |
29 |
Correct |
147 ms |
165208 KB |
Output is correct |
30 |
Correct |
146 ms |
165208 KB |
Output is correct |
31 |
Correct |
996 ms |
199232 KB |
Output is correct |
32 |
Correct |
349 ms |
199232 KB |
Output is correct |
33 |
Correct |
984 ms |
199232 KB |
Output is correct |
34 |
Correct |
960 ms |
199232 KB |
Output is correct |
35 |
Correct |
1002 ms |
199260 KB |
Output is correct |
36 |
Correct |
997 ms |
199260 KB |
Output is correct |
37 |
Correct |
783 ms |
199260 KB |
Output is correct |
38 |
Correct |
781 ms |
199260 KB |
Output is correct |
39 |
Correct |
665 ms |
199260 KB |
Output is correct |
40 |
Correct |
707 ms |
199260 KB |
Output is correct |
41 |
Correct |
841 ms |
199260 KB |
Output is correct |
42 |
Correct |
850 ms |
199260 KB |
Output is correct |
43 |
Correct |
244 ms |
199260 KB |
Output is correct |
44 |
Correct |
854 ms |
199260 KB |
Output is correct |
45 |
Correct |
829 ms |
199260 KB |
Output is correct |
46 |
Correct |
809 ms |
199260 KB |
Output is correct |
47 |
Correct |
551 ms |
199260 KB |
Output is correct |
48 |
Correct |
564 ms |
199260 KB |
Output is correct |
49 |
Correct |
596 ms |
199260 KB |
Output is correct |
50 |
Correct |
627 ms |
199260 KB |
Output is correct |
51 |
Correct |
634 ms |
199260 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Execution timed out |
5109 ms |
316300 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Execution timed out |
5037 ms |
317868 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
145 ms |
164728 KB |
Output is correct |
2 |
Correct |
140 ms |
164728 KB |
Output is correct |
3 |
Correct |
147 ms |
164728 KB |
Output is correct |
4 |
Correct |
137 ms |
164728 KB |
Output is correct |
5 |
Correct |
143 ms |
164908 KB |
Output is correct |
6 |
Correct |
145 ms |
165112 KB |
Output is correct |
7 |
Correct |
153 ms |
165112 KB |
Output is correct |
8 |
Correct |
148 ms |
165112 KB |
Output is correct |
9 |
Correct |
145 ms |
165112 KB |
Output is correct |
10 |
Correct |
144 ms |
165112 KB |
Output is correct |
11 |
Correct |
143 ms |
165112 KB |
Output is correct |
12 |
Correct |
146 ms |
165112 KB |
Output is correct |
13 |
Correct |
141 ms |
165112 KB |
Output is correct |
14 |
Correct |
147 ms |
165112 KB |
Output is correct |
15 |
Correct |
144 ms |
165112 KB |
Output is correct |
16 |
Correct |
147 ms |
165112 KB |
Output is correct |
17 |
Correct |
146 ms |
165112 KB |
Output is correct |
18 |
Correct |
138 ms |
165112 KB |
Output is correct |
19 |
Correct |
140 ms |
165136 KB |
Output is correct |
20 |
Correct |
149 ms |
165136 KB |
Output is correct |
21 |
Correct |
138 ms |
165136 KB |
Output is correct |
22 |
Correct |
148 ms |
165136 KB |
Output is correct |
23 |
Correct |
143 ms |
165136 KB |
Output is correct |
24 |
Correct |
143 ms |
165136 KB |
Output is correct |
25 |
Correct |
151 ms |
165136 KB |
Output is correct |
26 |
Correct |
146 ms |
165136 KB |
Output is correct |
27 |
Correct |
146 ms |
165136 KB |
Output is correct |
28 |
Correct |
149 ms |
165208 KB |
Output is correct |
29 |
Correct |
147 ms |
165208 KB |
Output is correct |
30 |
Correct |
146 ms |
165208 KB |
Output is correct |
31 |
Correct |
996 ms |
199232 KB |
Output is correct |
32 |
Correct |
349 ms |
199232 KB |
Output is correct |
33 |
Correct |
984 ms |
199232 KB |
Output is correct |
34 |
Correct |
960 ms |
199232 KB |
Output is correct |
35 |
Correct |
1002 ms |
199260 KB |
Output is correct |
36 |
Correct |
997 ms |
199260 KB |
Output is correct |
37 |
Correct |
783 ms |
199260 KB |
Output is correct |
38 |
Correct |
781 ms |
199260 KB |
Output is correct |
39 |
Correct |
665 ms |
199260 KB |
Output is correct |
40 |
Correct |
707 ms |
199260 KB |
Output is correct |
41 |
Correct |
841 ms |
199260 KB |
Output is correct |
42 |
Correct |
850 ms |
199260 KB |
Output is correct |
43 |
Correct |
244 ms |
199260 KB |
Output is correct |
44 |
Correct |
854 ms |
199260 KB |
Output is correct |
45 |
Correct |
829 ms |
199260 KB |
Output is correct |
46 |
Correct |
809 ms |
199260 KB |
Output is correct |
47 |
Correct |
551 ms |
199260 KB |
Output is correct |
48 |
Correct |
564 ms |
199260 KB |
Output is correct |
49 |
Correct |
596 ms |
199260 KB |
Output is correct |
50 |
Correct |
627 ms |
199260 KB |
Output is correct |
51 |
Correct |
634 ms |
199260 KB |
Output is correct |
52 |
Correct |
780 ms |
317868 KB |
Output is correct |
53 |
Correct |
744 ms |
317868 KB |
Output is correct |
54 |
Correct |
904 ms |
317868 KB |
Output is correct |
55 |
Correct |
818 ms |
317868 KB |
Output is correct |
56 |
Correct |
780 ms |
317868 KB |
Output is correct |
57 |
Correct |
836 ms |
317868 KB |
Output is correct |
58 |
Correct |
838 ms |
317868 KB |
Output is correct |
59 |
Correct |
840 ms |
317868 KB |
Output is correct |
60 |
Correct |
860 ms |
317868 KB |
Output is correct |
61 |
Correct |
267 ms |
317868 KB |
Output is correct |
62 |
Correct |
771 ms |
317868 KB |
Output is correct |
63 |
Correct |
877 ms |
317868 KB |
Output is correct |
64 |
Correct |
877 ms |
317868 KB |
Output is correct |
65 |
Correct |
905 ms |
317868 KB |
Output is correct |
66 |
Correct |
852 ms |
317868 KB |
Output is correct |
67 |
Correct |
431 ms |
317868 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
145 ms |
164728 KB |
Output is correct |
2 |
Correct |
140 ms |
164728 KB |
Output is correct |
3 |
Correct |
147 ms |
164728 KB |
Output is correct |
4 |
Correct |
137 ms |
164728 KB |
Output is correct |
5 |
Correct |
143 ms |
164908 KB |
Output is correct |
6 |
Correct |
145 ms |
165112 KB |
Output is correct |
7 |
Correct |
153 ms |
165112 KB |
Output is correct |
8 |
Correct |
148 ms |
165112 KB |
Output is correct |
9 |
Correct |
145 ms |
165112 KB |
Output is correct |
10 |
Correct |
144 ms |
165112 KB |
Output is correct |
11 |
Correct |
143 ms |
165112 KB |
Output is correct |
12 |
Correct |
146 ms |
165112 KB |
Output is correct |
13 |
Correct |
141 ms |
165112 KB |
Output is correct |
14 |
Correct |
147 ms |
165112 KB |
Output is correct |
15 |
Correct |
144 ms |
165112 KB |
Output is correct |
16 |
Correct |
147 ms |
165112 KB |
Output is correct |
17 |
Correct |
146 ms |
165112 KB |
Output is correct |
18 |
Correct |
138 ms |
165112 KB |
Output is correct |
19 |
Correct |
140 ms |
165136 KB |
Output is correct |
20 |
Correct |
149 ms |
165136 KB |
Output is correct |
21 |
Correct |
138 ms |
165136 KB |
Output is correct |
22 |
Correct |
148 ms |
165136 KB |
Output is correct |
23 |
Correct |
143 ms |
165136 KB |
Output is correct |
24 |
Correct |
143 ms |
165136 KB |
Output is correct |
25 |
Correct |
151 ms |
165136 KB |
Output is correct |
26 |
Correct |
146 ms |
165136 KB |
Output is correct |
27 |
Correct |
146 ms |
165136 KB |
Output is correct |
28 |
Correct |
149 ms |
165208 KB |
Output is correct |
29 |
Correct |
147 ms |
165208 KB |
Output is correct |
30 |
Correct |
146 ms |
165208 KB |
Output is correct |
31 |
Correct |
996 ms |
199232 KB |
Output is correct |
32 |
Correct |
349 ms |
199232 KB |
Output is correct |
33 |
Correct |
984 ms |
199232 KB |
Output is correct |
34 |
Correct |
960 ms |
199232 KB |
Output is correct |
35 |
Correct |
1002 ms |
199260 KB |
Output is correct |
36 |
Correct |
997 ms |
199260 KB |
Output is correct |
37 |
Correct |
783 ms |
199260 KB |
Output is correct |
38 |
Correct |
781 ms |
199260 KB |
Output is correct |
39 |
Correct |
665 ms |
199260 KB |
Output is correct |
40 |
Correct |
707 ms |
199260 KB |
Output is correct |
41 |
Correct |
841 ms |
199260 KB |
Output is correct |
42 |
Correct |
850 ms |
199260 KB |
Output is correct |
43 |
Correct |
244 ms |
199260 KB |
Output is correct |
44 |
Correct |
854 ms |
199260 KB |
Output is correct |
45 |
Correct |
829 ms |
199260 KB |
Output is correct |
46 |
Correct |
809 ms |
199260 KB |
Output is correct |
47 |
Correct |
551 ms |
199260 KB |
Output is correct |
48 |
Correct |
564 ms |
199260 KB |
Output is correct |
49 |
Correct |
596 ms |
199260 KB |
Output is correct |
50 |
Correct |
627 ms |
199260 KB |
Output is correct |
51 |
Correct |
634 ms |
199260 KB |
Output is correct |
52 |
Execution timed out |
5109 ms |
316300 KB |
Time limit exceeded |
53 |
Halted |
0 ms |
0 KB |
- |