제출 #838417

#제출 시각아이디문제언어결과실행 시간메모리
838417ballbattleAliens (IOI16_aliens)C++14
60 / 100
2033 ms19748 KiB
#include "aliens.h" #include <iostream> #include <vector> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; typedef long double f; //typedef __float128 f; typedef pair<ll,ll> pll; typedef pair<f,ll> pfl; typedef vector<ll> vll; typedef vector<pll> vpll; typedef vector<pfl> vp; typedef vector<int> vi; struct line { f c; f slope; //pfl y() {return make_pair(c + (curr_x*slope), my_k);} //pfl operator()(ll x) {return make_pair(c + ((f)x)*slope, my_k);} pfl operator()(f x) {return make_pair(c + x*slope, my_k);} ll my_k; }; typedef vector<line> vl; #define rep(a,b,c) for(ll a = b; a < c; a++) #define pb(a) push_back(a) #define mp(a,b) make_pair(a,b) #define all(a) a.begin(),a.end() #define sz(a) a.size() pfl operator+ (pfl a, pfl b) {return mp(a.first+b.first,a.second+b.second);} pfl _dp(f lambda); void insert(line seg, ll l, ll r, ll idx); pfl query(ll x, ll l, ll r, ll idx, f curr_x); ll n; ll k; ll s; vpll p; vll h; vp dp; //f curr_x; vl tree; line inf; long long take_photos(int N, int M, int K, vi R, vi C) { k = K; p.clear(); rep(i,0,N) {if (R[i] > C[i]) {swap(R[i],C[i]);}} // Flip over diagonal rep(i,0,N) {p.pb(mp(C[i],-R[i]));} sort(all(p)); // Sort in a way that makes worse points come before better points rep(i,0,N) { C[i] = p[i].first; R[i] = -p[i].second; } /*cout << "C[i] R[i]" << endl; rep(i,0,N) {cout << C[i] << " " << R[i] << endl;}*/ // C[i] is in increasing order // R[i] is in decreasing order // The first point is the optimal p.clear(); p.pb(mp(-1,-1)); // thing.... rep(i,0,N) { while ((C[i] >= p[sz(p)-1].first) && (R[i] <= p[sz(p)-1].second)) { // Prune bad points p.pop_back(); } p.pb(mp(C[i],R[i])); // Add points in (x,-y) format to p } /*cout << "points:" << endl; rep(i,0,sz(p)) {cout << p[i].first << " " << p[i].second << endl;}*/ n = sz(p); h.resize(n,0); rep(i,0,n-1) {h[i] = p[i].first - p[i+1].second;} // Prepare Li Chao tree inf.c = f(10000000000000); inf.slope = f(0); s = 1; ll tempppp = n-1; for(; tempppp > 0; tempppp>>=1) {s <<= 1;} /*cout << "h:" << endl; rep(i,0,n) {cout << h[i] << " ";} cout << endl;*/ /*rep(i,0,10) {cout << _dp(f(i)).first << endl;}*/ ll ans = 1000000000001; f lo = f(0.0); f hi = f(1000000000001); f mid; pfl curr; rep(i,0,64) { mid = (lo)/f(2) + (hi)/f(2); //cout << mid << endl; curr = _dp(mid); //cout << (long double)(curr.first) << " " << curr.second << " " << (long double)(mid) << endl; if (curr.second == min(k,n-1)) { ans = llround(curr.first - mid*curr.second); //cout << llround((long double)(curr.first - mid*curr.second)) << " " << (curr.first - mid*curr.second) << endl; break; } else if (curr.second > min(k,n-1)) { lo = mid; } else { hi = mid; /*ll tmp = round(curr.first - mid*(f(curr.second))); // Hotfix ans = min(tmp, ans);*/ } } if (ans == 1000000000001) {ans = round(curr.first - mid*(f(k)));} // Based solution //if (ans==-1) {ans = round(curr.first - mid*(f(curr.second)));} //cout << n-1 << endl; return ans; } pfl _dp(f lambda) { // Initialize the Li Chao Tree tree.clear(); tree.resize(2*s,inf); dp.clear(); dp.resize(n,mp(f(10000000000000),0)); //dp[0] = mp(f( (p[0].first-p[0].second+1)*(p[0].first-p[0].second+1) ),1); dp[0] = mp(f(0),0); //cout << "built xd" << endl; rep(i,0,n) { /*rep(j,0,i) { ll x_i = p[i].first; ll x_j = p[j].first; if (h[j] < 0) { dp[i] = min(dp[i], dp[j] + mp(f( (x_i-x_j+h[j]+1)*(x_i-x_j+h[j]+1) ),1) + mp(lambda,0)); } else { dp[i] = min(dp[i], dp[j] + mp(f( (x_i-x_j+h[j]+1)*(x_i-x_j+h[j]+1) - (h[j]+1)*(h[j]+1) ),1) + mp(lambda,0)); } }*/ f curr_x = (f)p[i].first; if (i!=0) dp[i] = mp(curr_x*curr_x,0) + query(i, 0, n, 1, curr_x) + mp(lambda,1); // wtf based //cout << "i: " << i << " " << dp[i].first << " " << dp[i].second << endl; line new_line; new_line.my_k = dp[i].second; // include k xd if (h[i] < 0) { new_line.c = dp[i].first + curr_x*curr_x + (f)((h[i]+1)*(h[i]+1)) - 2*curr_x*(f)(h[i]+1); new_line.slope = (f)(-2*(curr_x-h[i]-1)); } else { new_line.c = dp[i].first + curr_x*curr_x - 2*curr_x*(f)(h[i]+1); new_line.slope = (f)(-2*(curr_x-h[i]-1)); } insert(new_line, 0, n, 1); } /*cout << "dp: "; rep(i,0,n) {cout << dp[i].first - lambda*dp[i].second << "," << dp[i].second << " ";} cout << endl;*/ return dp[n-1]; } void insert(line seg, ll l, ll r, ll idx) { ll m = (l+r)/2; f curr_x = (f)p[m].first; if (l+1==r) { if (tree[idx](curr_x) > seg(curr_x)) {swap(tree[idx],seg);} return; } // make seg the worse one (ie the larger one) if (tree[idx](curr_x) > seg(curr_x)) {swap(tree[idx],seg);} // no early returns bc whatever if (tree[idx].slope > seg.slope) { // The better (smaller) one has larger slope, which means the worse (larger) will undercut it later. Hence rc insert(seg, m, r, 2*idx + 1); // rc } else { // The better (smaller) one has smaller slopw, which means the worse (larger) will undercut it before. Hence lc insert(seg, l, m, 2*idx); // lc } } pfl query(ll x, ll l, ll r, ll idx, f curr_x) { ll m = (l+r)/2; if (l+1 == r) {return tree[idx](curr_x);} if (x < m) { return min(tree[idx](curr_x), query(x, l, m, 2*idx, curr_x)); // lc } else { return min(tree[idx](curr_x), query(x, m, r, 2*idx + 1, curr_x)); // rc } }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...