답안 #836026

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
836026 2023-08-24T05:17:04 Z maomao90 식물 비교 (IOI20_plants) C++17
49 / 100
2040 ms 35156 KB
// I can do all things through Christ who strengthens me
// Philippians 4:13

#include "plants.h"
#include <bits/stdc++.h>
using namespace std;

#define REP(i, j, k) for (int i = j; i < (k); i++)
#define RREP(i, j, k) for (int i = j; i >= (k); i--)

template <class T>
inline bool mnto(T &a, const T b) {return a > b ? a = b, 1 : 0;}
template <class T>
inline bool mxto(T &a, const T b) {return a < b ? a = b, 1 : 0;}

typedef long long ll;
typedef long double ld;
#define FI first
#define SE second
typedef pair<int, int> ii;
typedef pair<ll, ll> pll;
#define ALL(x) x.begin(), x.end()
#define SZ(x) (int) x.size()
#define pb push_back
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<ii> vii;
typedef tuple<int, int, int> iii;
typedef vector<iii> viii;

#ifndef DEBUG
#define cerr if (0) cerr
#endif

const int INF = 1000000005;
const ll LINF = 1000000000000000005;
const int MAXN = 200005;

int n, k;
vi r;
int h[MAXN], th[MAXN];

vi adj[MAXN];
bool vis[MAXN];
void dfs(int u) {
    for (int v : adj[u]) {
        if (vis[v]) {
            continue;
        }
        vis[v] = 1;
        dfs(v);
    }
}

#define MLR int mid = (lo + hi) >> 1, lc = u << 1, rc = u << 1 ^ 1
struct SegTree {
    pair<ii, int> mx[MAXN * 4];
    ii lz[MAXN * 4];
    void init(int u = 1, int lo = 0, int hi = n - 1) {
        lz[u] = {0, 0};
        if (lo == hi) {
            mx[u] = {{r[lo], 0}, lo};
            return;
        }
        MLR;
        init(lc, lo, mid);
        init(rc, mid + 1, hi);
        mx[u] = max(mx[lc], mx[rc]);
    }
    void apply(ii x, int u, int lo, int hi) {
        mx[u].FI.FI += x.FI;
        mx[u].FI.SE += x.SE;
        lz[u].FI += x.FI;
        lz[u].SE += x.SE;
    }
    void propo(int u, int lo, int hi) {
        if (lz[u] == ii(0, 0)) {
            return;
        }
        MLR;
        apply(lz[u], lc, lo, mid);
        apply(lz[u], rc, mid + 1, hi);
        lz[u] = {0, 0};
    }
    void incre(int s, int e, ii x, int u = 1, int lo = 0, int hi = n - 1) {
        if (s >= n) {
            incre(s - n, e - n, x);
            return;
        }
        if (e >= n) {
            incre(s, n - 1, x);
            incre(0, e - n, x);
            return;
        }
        if (lo >= s && hi <= e) {
            apply(x, u, lo, hi);
            return;
        }
        MLR;
        propo(u, lo, hi);
        if (s <= mid) {
            incre(s, e, x, lc, lo, mid);
        }
        if (e > mid) {
            incre(s, e, x, rc, mid + 1, hi);
        }
        mx[u] = max(mx[lc], mx[rc]);
    }
    pair<ii, int> qmx(int s, int e, int u = 1, int lo = 0, int hi = n - 1) {
        if (s >= n) {
            return qmx(s - n, e - n);
        }
        if (e >= n) {
            return max(qmx(s, n - 1), qmx(0, e - n));
        }
        if (lo >= s && hi <= e) {
            return mx[u];
        }
        MLR;
        propo(u, lo, hi);
        pair<ii, int> res = {{-INF, -INF}, -INF};
        if (s <= mid) {
            mxto(res, qmx(s, e, lc, lo, mid));
        }
        if (e > mid) {
            mxto(res, qmx(s, e, rc, mid + 1, hi));
        }
        return res;
    }
} st1, st2;

struct DSU {
    int p[MAXN], rnk[MAXN];
    void init() {
        REP (i, 0, n) {
            p[i] = i;
            rnk[i] = 0;
        }
    }
    int findp(int i) {
        if (p[i] == i) {
            return i;
        }
        return p[i] = findp(p[i]);
    }
    bool join(int a, int b) {
        int pa = findp(a), pb = findp(b);
        if (pa == pb) {
            return 0;
        }
        if (rnk[pa] < rnk[pb]) {
            swap(pa, pb);
        }
        if (rnk[pa] == rnk[pb]) {
            rnk[pa]++;
        }
        p[pb] = pa;
        return 1;
    }
} ds1, ds2;

void init(int _k, vi _r) {
    k = _k; r = _r;
    n = SZ(r);
    st1.init();
    st2.init();
    ds1.init();
    ds2.init();
    REP (i, 0, n) {
        if (r[i] == k - 1) {
            st1.incre(i + 1, i + k - 1, {0, -1});
            st2.incre(i, i, {-INF, -INF});
        }
    }
    int z = 1;
    while (1) {
        vi todo;
        while (1) {
            auto [tmp, id] = st1.qmx(0, n - 1);
            if (tmp != ii(k - 1, 0)) {
                break;
            }
            h[id] = z;
            st1.incre(id, id, {-INF, -INF});
            todo.pb(id);
            /*
            if (k == 2) {
                REP (j, id + 1, id + k) {
                    if (h[j % n] == 0) {
                        ds1.join(id, j % n);
                    } else {
                        ds2.join(id, j % n);
                    }
                }
            }
            */
            if (k == 2 || n <= 300) {
                REP (j, id + 1, id + k) {
                    if (h[j % n] == 0) {
                        //adj[id].pb(j % n);
                        ds1.join(id, j % n);
                    }
                }
            }
        }
        if (todo.empty()) {
            break;
        }
        for (int id : todo) {
            st1.incre(id + 1, id + k - 1, {0, 1});
            st1.incre(id - k + 1 + n, id - 1 + n, {1, 0});
            st2.incre(id - k + 1 + n, id - 1 + n, {1, 0});
            auto [v, u] = st2.qmx(id - k + 1 + n, id - 1 + n);
            while (v.FI == k - 1) {
                st1.incre(u + 1, u + k - 1, {0, -1});
                st2.incre(u, u, {-INF, -INF});
                tie(v, u) = st2.qmx(id - k + 1 + n, id - 1 + n);
            }
        }
        z++;
    }
    {
        REP (i, 0, n) {
            r[i] = k - 1 - r[i];
        }
        st1.init();
        st2.init();
        REP (i, 0, n) {
            if (r[i] == k - 1) {
                st1.incre(i + 1, i + k - 1, {0, -1});
                st2.incre(i, i, {-INF, -INF});
            }
        }
        int z = 1;
        while (1) {
            vi todo;
            while (1) {
                auto [tmp, id] = st1.qmx(0, n - 1);
                if (tmp != ii(k - 1, 0)) {
                    break;
                }
                th[id] = z;
                st1.incre(id, id, {-INF, -INF});
                todo.pb(id);
                if (k == 2 || n <= 300) {
                    REP (j, id + 1, id + k) {
                        if (th[j % n] == 0) {
                            //adj[id].pb(j % n);
                            ds2.join(id, j % n);
                        }
                    }
                }
            }
            if (todo.empty()) {
                break;
            }
            for (int id : todo) {
                st1.incre(id + 1, id + k - 1, {0, 1});
                st1.incre(id - k + 1 + n, id - 1 + n, {1, 0});
                st2.incre(id - k + 1 + n, id - 1 + n, {1, 0});
                auto [v, u] = st2.qmx(id - k + 1 + n, id - 1 + n);
                while (v.FI == k - 1) {
                    st1.incre(u + 1, u + k - 1, {0, -1});
                    st2.incre(u, u, {-INF, -INF});
                    tie(v, u) = st2.qmx(id - k + 1 + n, id - 1 + n);
                }
            }
            z++;
        }
    }
	return;
}

int compare_plants(int x, int y) {
    /*
    if (n <= 300) {
        REP (i, 0, n) {
            vis[i] = 0;
        }
        vis[x] = 1;
        dfs(x);
        if (vis[y]) {
            return -1;
        }
        REP (i, 0, n) {
            vis[i] = 0;
        }
        vis[y] = 1;
        dfs(y);
        if (vis[x]) {
            return 1;
        }
        return 0;
    }
    */
    if (k == 2 || n <= 300) {
        if (ds1.findp(x) != ds1.findp(y) && ds2.findp(x) != ds2.findp(y)) {
            return 0;
        }
        if (ds1.findp(x) == ds1.findp(y)) {
            if (h[x] > h[y]) {
                return 1;
            } else {
                return -1;
            }
        } else {
            if (th[x] > th[y]) {
                return -1;
            } else {
                return 1;
            }
        }
    } 
    if (h[x] > h[y]) {
        return 1;
    } else {
        return -1;
    }
}
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 2 ms 4948 KB Output is correct
6 Correct 44 ms 7888 KB Output is correct
7 Correct 109 ms 11104 KB Output is correct
8 Correct 851 ms 35156 KB Output is correct
9 Correct 805 ms 34968 KB Output is correct
10 Correct 796 ms 34896 KB Output is correct
11 Correct 703 ms 34820 KB Output is correct
12 Correct 644 ms 34924 KB Output is correct
13 Correct 612 ms 34892 KB Output is correct
14 Correct 600 ms 34948 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 3 ms 5076 KB Output is correct
6 Correct 8 ms 5204 KB Output is correct
7 Correct 73 ms 8628 KB Output is correct
8 Correct 4 ms 5076 KB Output is correct
9 Correct 8 ms 5204 KB Output is correct
10 Correct 88 ms 8604 KB Output is correct
11 Correct 67 ms 8528 KB Output is correct
12 Correct 62 ms 8780 KB Output is correct
13 Correct 71 ms 8676 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 3 ms 5076 KB Output is correct
6 Correct 8 ms 5204 KB Output is correct
7 Correct 73 ms 8628 KB Output is correct
8 Correct 4 ms 5076 KB Output is correct
9 Correct 8 ms 5204 KB Output is correct
10 Correct 88 ms 8604 KB Output is correct
11 Correct 67 ms 8528 KB Output is correct
12 Correct 62 ms 8780 KB Output is correct
13 Correct 71 ms 8676 KB Output is correct
14 Correct 179 ms 11172 KB Output is correct
15 Correct 1970 ms 34948 KB Output is correct
16 Correct 195 ms 11048 KB Output is correct
17 Correct 1937 ms 35076 KB Output is correct
18 Correct 1103 ms 34984 KB Output is correct
19 Correct 1225 ms 34924 KB Output is correct
20 Correct 1625 ms 34948 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 4 ms 4948 KB Output is correct
3 Correct 51 ms 8008 KB Output is correct
4 Correct 838 ms 34956 KB Output is correct
5 Correct 1225 ms 34884 KB Output is correct
6 Correct 1667 ms 34948 KB Output is correct
7 Correct 1905 ms 34944 KB Output is correct
8 Correct 2040 ms 34944 KB Output is correct
9 Correct 1097 ms 34972 KB Output is correct
10 Correct 981 ms 35092 KB Output is correct
11 Correct 621 ms 34956 KB Output is correct
12 Correct 824 ms 34832 KB Output is correct
13 Correct 1129 ms 34908 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 5076 KB Output is correct
5 Incorrect 2 ms 4948 KB Output isn't correct
6 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Incorrect 7 ms 5076 KB Output isn't correct
6 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 2 ms 4948 KB Output is correct
6 Correct 44 ms 7888 KB Output is correct
7 Correct 109 ms 11104 KB Output is correct
8 Correct 851 ms 35156 KB Output is correct
9 Correct 805 ms 34968 KB Output is correct
10 Correct 796 ms 34896 KB Output is correct
11 Correct 703 ms 34820 KB Output is correct
12 Correct 644 ms 34924 KB Output is correct
13 Correct 612 ms 34892 KB Output is correct
14 Correct 600 ms 34948 KB Output is correct
15 Correct 3 ms 4948 KB Output is correct
16 Correct 2 ms 4948 KB Output is correct
17 Correct 2 ms 4948 KB Output is correct
18 Correct 2 ms 4948 KB Output is correct
19 Correct 3 ms 5076 KB Output is correct
20 Correct 8 ms 5204 KB Output is correct
21 Correct 73 ms 8628 KB Output is correct
22 Correct 4 ms 5076 KB Output is correct
23 Correct 8 ms 5204 KB Output is correct
24 Correct 88 ms 8604 KB Output is correct
25 Correct 67 ms 8528 KB Output is correct
26 Correct 62 ms 8780 KB Output is correct
27 Correct 71 ms 8676 KB Output is correct
28 Correct 179 ms 11172 KB Output is correct
29 Correct 1970 ms 34948 KB Output is correct
30 Correct 195 ms 11048 KB Output is correct
31 Correct 1937 ms 35076 KB Output is correct
32 Correct 1103 ms 34984 KB Output is correct
33 Correct 1225 ms 34924 KB Output is correct
34 Correct 1625 ms 34948 KB Output is correct
35 Correct 3 ms 4948 KB Output is correct
36 Correct 4 ms 4948 KB Output is correct
37 Correct 51 ms 8008 KB Output is correct
38 Correct 838 ms 34956 KB Output is correct
39 Correct 1225 ms 34884 KB Output is correct
40 Correct 1667 ms 34948 KB Output is correct
41 Correct 1905 ms 34944 KB Output is correct
42 Correct 2040 ms 34944 KB Output is correct
43 Correct 1097 ms 34972 KB Output is correct
44 Correct 981 ms 35092 KB Output is correct
45 Correct 621 ms 34956 KB Output is correct
46 Correct 824 ms 34832 KB Output is correct
47 Correct 1129 ms 34908 KB Output is correct
48 Correct 3 ms 4948 KB Output is correct
49 Correct 2 ms 4948 KB Output is correct
50 Correct 2 ms 4948 KB Output is correct
51 Correct 2 ms 5076 KB Output is correct
52 Incorrect 2 ms 4948 KB Output isn't correct
53 Halted 0 ms 0 KB -