답안 #832078

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
832078 2023-08-20T22:02:39 Z finn__ Simurgh (IOI17_simurgh) C++17
70 / 100
86 ms 7524 KB
#include "simurgh.h"
#include <bits/stdc++.h>
using namespace std;

namespace quadratic
{
    constexpr size_t N = 240;

    vector<pair<int, int>> g[N];
    int adj[N][N];
    bitset<N *(N - 1) / 2> checked, is_in;

    vector<int> solve(int n, vector<int> u, vector<int> v)
    {
        memset(adj, 255, sizeof adj);
        for (int i = 0; i < u.size(); ++i)
            g[u[i]].emplace_back(v[i], i), g[v[i]].emplace_back(u[i], i), adj[u[i]][v[i]] = adj[v[i]][u[i]] = i;
        vector<int> ans;

        for (int i = 0; i < n; ++i)
        {
            vector<vector<int>> bccs, bcc_trees;
            vector<int> edge_to_bcc;
            bitset<N> visited;
            visited[i] = 1;

            for (auto const &[z, j] : g[i])
                if (!visited[z])
                {
                    queue<int> q({z});
                    visited[z] = 1;
                    edge_to_bcc.push_back(j);
                    vector<int> nodes, edges;

                    while (!q.empty())
                    {
                        int x = q.front();
                        nodes.push_back(x);
                        q.pop();
                        for (auto const &[y, i] : g[x])
                            if (!visited[y])
                            {
                                edges.push_back(i);
                                q.push(y);
                                visited[y] = 1;
                            }
                    }

                    bccs.push_back(nodes);
                    bcc_trees.push_back(edges);
                }

            for (size_t j = 0; j < bccs.size(); ++j)
            {
                vector<int> spanning_tree;
                for (size_t k = 0; k < bccs.size(); ++k)
                {
                    spanning_tree.insert(spanning_tree.end(), bcc_trees[k].begin(), bcc_trees[k].end());
                    if (k != j)
                        spanning_tree.push_back(edge_to_bcc[k]);
                }

                for (auto const &x : bccs[j])
                    if (adj[i][x] != -1)
                    {
                        spanning_tree.push_back(adj[i][x]);
                        break;
                    }

                int in_overlap = count_common_roads(spanning_tree), out_overlap = in_overlap;
                vector<int> in;
                bool skipped = 0, know_in = 0;
                for (auto const &x : bccs[j])
                    if (adj[i][x] != -1)
                    {
                        if (!skipped)
                        {
                            checked[adj[i][x]] = 1;
                            in.push_back(adj[i][x]);
                            skipped = 1;
                            continue;
                        }

                        if (checked[adj[i][x]] && know_in)
                            continue;

                        spanning_tree.pop_back();
                        spanning_tree.push_back(adj[i][x]);
                        int y = count_common_roads(spanning_tree);
                        if (!know_in)
                        {
                            if (checked[adj[i][x]])
                            {
                                know_in = 1;
                                if (is_in[adj[i][x]])
                                {
                                    if (in_overlap < y)
                                        in.clear(), ++in_overlap;
                                    else
                                        --out_overlap;
                                }
                                else
                                {
                                    if (in_overlap == y)
                                        in.clear(), ++in_overlap;
                                    else
                                        --out_overlap;
                                }
                            }
                            if (y == in_overlap)
                                in.push_back(adj[i][x]);
                            else if (y < in_overlap)
                            {
                                out_overlap--;
                                know_in = 1;
                            }
                            else if (y > in_overlap)
                            {
                                know_in = 1;
                                in.clear();
                                in_overlap++;
                                in.push_back(adj[i][x]);
                            }
                        }
                        else if (y == in_overlap)
                            in.push_back(adj[i][x]);

                        checked[adj[i][x]] = 1;
                    }

                ans.insert(ans.end(), in.begin(), in.end());
                for (auto const &j : in)
                    is_in[j] = 1;
            }
        }

        sort(ans.begin(), ans.end());
        ans.resize(unique(ans.begin(), ans.end()) - ans.begin());
        return ans;
    }
};

template <size_t N>
struct dsu
{
    int p[N];

    int repr(int u) { return p[u] < 0 ? u : p[u] = repr(p[u]); }

    bool merge(int u, int v)
    {
        u = repr(u), v = repr(v);
        if (u == v)
            return 0;
        if (p[u] > p[v])
            swap(u, v);
        p[u] += p[v];
        p[v] = u;
        return 1;
    }

    int set_size(int u) { return -p[repr(u)]; }

    void reset() { memset(p, 255, sizeof p); }
};

namespace nlogn
{
    constexpr size_t N = 500;

    int adj[N][N], degree[N];
    bitset<N *(N - 1) / 2> is_in, removed;
    dsu<N> d;

    vector<int> solve(int n, vector<int> u, vector<int> v)
    {
        if (n == 2)
            return {0};
        for (int i = 0; i < u.size(); ++i)
            adj[u[i]][v[i]] = adj[v[i]][u[i]] = i;

        auto query_forest = [&](vector<int> forest)
        {
            d.reset();
            for (int i : forest)
                d.merge(u[i], v[i]);
            int ans = 0;
            for (int i = 0; i + 1 < n; ++i)
                if (d.merge(i, i + 1))
                {
                    if (is_in[adj[i][i + 1]])
                        --ans;
                    forest.push_back(adj[i][i + 1]);
                }
            return ans + count_common_roads(forest);
        };

        auto check_edge = [&](int u, int v)
        {
            int w = 0;
            while (w == u || w == v)
                ++w;
            vector<int> spanning_tree;
            for (int i = 0; i < n; ++i)
                if (i != u && i != v && i != w)
                    spanning_tree.push_back(adj[u][i]);

            spanning_tree.push_back(adj[u][v]);
            spanning_tree.push_back(adj[v][w]);
            int a = count_common_roads(spanning_tree);
            spanning_tree[spanning_tree.size() - 2] = adj[w][u];
            int b = count_common_roads(spanning_tree);
            spanning_tree[spanning_tree.size() - 1] = adj[u][v];
            int c = count_common_roads(spanning_tree);
            return max(a, c) > b;
        };

        for (int i = 0; i + 1 < n; ++i)
            is_in[adj[i][i + 1]] = check_edge(i, i + 1);
        for (int i = 0; i < n; ++i)
        {
            vector<int> spanning_tree;
            for (int j = 0; j < n; ++j)
                if (i != j)
                    spanning_tree.push_back(adj[i][j]);
            degree[i] = count_common_roads(spanning_tree);
        }

        queue<int> q;
        for (int i = 0; i < n; ++i)
            if (degree[i] == 1)
                q.push(i);

        vector<int> ans;
        while (ans.size() != n - 1)
        {
            int x = q.front();
            q.pop();

            int a = 0, b = n - 1;
            while (a < b)
            {
                int mid = (a + b) / 2;
                vector<int> forest;
                for (int j = 0; j <= mid; ++j)
                    if (j != x && !removed[adj[x][j]])
                        forest.push_back(adj[x][j]);
                if (query_forest(forest))
                    b = mid;
                else
                    a = mid + 1;
            }

            removed[adj[x][a]] = 1;
            ans.push_back(adj[a][x]);

            degree[a]--;
            if (degree[a] == 1)
                q.push(a);
        }

        return ans;
    }
};

vector<int> find_roads(int n, vector<int> u, vector<int> v)
{
    if (u.size() != n * (n - 1) / 2)
        return quadratic::solve(n, u, v);
    else
        return nlogn::solve(n, u, v);
}

Compilation message

simurgh.cpp: In function 'std::vector<int> quadratic::solve(int, std::vector<int>, std::vector<int>)':
simurgh.cpp:16:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   16 |         for (int i = 0; i < u.size(); ++i)
      |                         ~~^~~~~~~~~~
simurgh.cpp: In function 'std::vector<int> nlogn::solve(int, std::vector<int>, std::vector<int>)':
simurgh.cpp:179:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  179 |         for (int i = 0; i < u.size(); ++i)
      |                         ~~^~~~~~~~~~
simurgh.cpp:235:27: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
  235 |         while (ans.size() != n - 1)
      |                ~~~~~~~~~~~^~~~~~~~
simurgh.cpp: In function 'std::vector<int> find_roads(int, std::vector<int>, std::vector<int>)':
simurgh.cpp:268:18: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
  268 |     if (u.size() != n * (n - 1) / 2)
      |         ~~~~~~~~~^~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB correct
2 Correct 0 ms 212 KB correct
3 Correct 0 ms 212 KB correct
4 Correct 0 ms 468 KB correct
5 Correct 0 ms 468 KB correct
6 Correct 0 ms 468 KB correct
7 Correct 0 ms 212 KB correct
8 Correct 0 ms 212 KB correct
9 Correct 1 ms 468 KB correct
10 Correct 0 ms 468 KB correct
11 Correct 0 ms 468 KB correct
12 Correct 0 ms 212 KB correct
13 Correct 0 ms 212 KB correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB correct
2 Correct 0 ms 212 KB correct
3 Correct 0 ms 212 KB correct
4 Correct 0 ms 468 KB correct
5 Correct 0 ms 468 KB correct
6 Correct 0 ms 468 KB correct
7 Correct 0 ms 212 KB correct
8 Correct 0 ms 212 KB correct
9 Correct 1 ms 468 KB correct
10 Correct 0 ms 468 KB correct
11 Correct 0 ms 468 KB correct
12 Correct 0 ms 212 KB correct
13 Correct 0 ms 212 KB correct
14 Correct 1 ms 340 KB correct
15 Correct 1 ms 340 KB correct
16 Correct 1 ms 340 KB correct
17 Correct 1 ms 596 KB correct
18 Correct 1 ms 468 KB correct
19 Correct 1 ms 608 KB correct
20 Correct 1 ms 596 KB correct
21 Correct 1 ms 596 KB correct
22 Correct 1 ms 468 KB correct
23 Correct 1 ms 468 KB correct
24 Correct 1 ms 552 KB correct
25 Correct 1 ms 468 KB correct
26 Correct 1 ms 468 KB correct
27 Correct 1 ms 468 KB correct
28 Correct 1 ms 468 KB correct
29 Correct 1 ms 468 KB correct
30 Correct 1 ms 468 KB correct
31 Correct 1 ms 468 KB correct
32 Correct 1 ms 468 KB correct
33 Correct 1 ms 468 KB correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB correct
2 Correct 0 ms 212 KB correct
3 Correct 0 ms 212 KB correct
4 Correct 0 ms 468 KB correct
5 Correct 0 ms 468 KB correct
6 Correct 0 ms 468 KB correct
7 Correct 0 ms 212 KB correct
8 Correct 0 ms 212 KB correct
9 Correct 1 ms 468 KB correct
10 Correct 0 ms 468 KB correct
11 Correct 0 ms 468 KB correct
12 Correct 0 ms 212 KB correct
13 Correct 0 ms 212 KB correct
14 Correct 1 ms 340 KB correct
15 Correct 1 ms 340 KB correct
16 Correct 1 ms 340 KB correct
17 Correct 1 ms 596 KB correct
18 Correct 1 ms 468 KB correct
19 Correct 1 ms 608 KB correct
20 Correct 1 ms 596 KB correct
21 Correct 1 ms 596 KB correct
22 Correct 1 ms 468 KB correct
23 Correct 1 ms 468 KB correct
24 Correct 1 ms 552 KB correct
25 Correct 1 ms 468 KB correct
26 Correct 1 ms 468 KB correct
27 Correct 1 ms 468 KB correct
28 Correct 1 ms 468 KB correct
29 Correct 1 ms 468 KB correct
30 Correct 1 ms 468 KB correct
31 Correct 1 ms 468 KB correct
32 Correct 1 ms 468 KB correct
33 Correct 1 ms 468 KB correct
34 Correct 15 ms 1492 KB correct
35 Correct 83 ms 1748 KB correct
36 Correct 61 ms 1492 KB correct
37 Correct 7 ms 596 KB correct
38 Correct 86 ms 1776 KB correct
39 Correct 74 ms 1620 KB correct
40 Correct 59 ms 1492 KB correct
41 Correct 16 ms 1480 KB correct
42 Correct 85 ms 1776 KB correct
43 Correct 45 ms 1364 KB correct
44 Correct 38 ms 1108 KB correct
45 Correct 43 ms 1108 KB correct
46 Correct 33 ms 980 KB correct
47 Correct 15 ms 808 KB correct
48 Correct 4 ms 596 KB correct
49 Correct 6 ms 596 KB correct
50 Correct 16 ms 808 KB correct
51 Correct 43 ms 1108 KB correct
52 Correct 37 ms 1104 KB correct
53 Correct 33 ms 980 KB correct
54 Correct 46 ms 1364 KB correct
55 Correct 53 ms 1172 KB correct
56 Correct 44 ms 1108 KB correct
57 Correct 43 ms 1180 KB correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB correct
2 Correct 1 ms 340 KB correct
3 Correct 44 ms 3048 KB correct
4 Correct 70 ms 5244 KB correct
5 Correct 70 ms 5324 KB correct
6 Correct 80 ms 5180 KB correct
7 Correct 67 ms 5120 KB correct
8 Correct 68 ms 5120 KB correct
9 Correct 71 ms 5204 KB correct
10 Correct 70 ms 5244 KB correct
11 Correct 72 ms 5196 KB correct
12 Correct 70 ms 5196 KB correct
13 Correct 0 ms 212 KB correct
14 Correct 73 ms 5136 KB correct
15 Correct 70 ms 5188 KB correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB correct
2 Correct 0 ms 212 KB correct
3 Correct 0 ms 212 KB correct
4 Correct 0 ms 468 KB correct
5 Correct 0 ms 468 KB correct
6 Correct 0 ms 468 KB correct
7 Correct 0 ms 212 KB correct
8 Correct 0 ms 212 KB correct
9 Correct 1 ms 468 KB correct
10 Correct 0 ms 468 KB correct
11 Correct 0 ms 468 KB correct
12 Correct 0 ms 212 KB correct
13 Correct 0 ms 212 KB correct
14 Correct 1 ms 340 KB correct
15 Correct 1 ms 340 KB correct
16 Correct 1 ms 340 KB correct
17 Correct 1 ms 596 KB correct
18 Correct 1 ms 468 KB correct
19 Correct 1 ms 608 KB correct
20 Correct 1 ms 596 KB correct
21 Correct 1 ms 596 KB correct
22 Correct 1 ms 468 KB correct
23 Correct 1 ms 468 KB correct
24 Correct 1 ms 552 KB correct
25 Correct 1 ms 468 KB correct
26 Correct 1 ms 468 KB correct
27 Correct 1 ms 468 KB correct
28 Correct 1 ms 468 KB correct
29 Correct 1 ms 468 KB correct
30 Correct 1 ms 468 KB correct
31 Correct 1 ms 468 KB correct
32 Correct 1 ms 468 KB correct
33 Correct 1 ms 468 KB correct
34 Correct 15 ms 1492 KB correct
35 Correct 83 ms 1748 KB correct
36 Correct 61 ms 1492 KB correct
37 Correct 7 ms 596 KB correct
38 Correct 86 ms 1776 KB correct
39 Correct 74 ms 1620 KB correct
40 Correct 59 ms 1492 KB correct
41 Correct 16 ms 1480 KB correct
42 Correct 85 ms 1776 KB correct
43 Correct 45 ms 1364 KB correct
44 Correct 38 ms 1108 KB correct
45 Correct 43 ms 1108 KB correct
46 Correct 33 ms 980 KB correct
47 Correct 15 ms 808 KB correct
48 Correct 4 ms 596 KB correct
49 Correct 6 ms 596 KB correct
50 Correct 16 ms 808 KB correct
51 Correct 43 ms 1108 KB correct
52 Correct 37 ms 1104 KB correct
53 Correct 33 ms 980 KB correct
54 Correct 46 ms 1364 KB correct
55 Correct 53 ms 1172 KB correct
56 Correct 44 ms 1108 KB correct
57 Correct 43 ms 1180 KB correct
58 Correct 0 ms 212 KB correct
59 Correct 1 ms 340 KB correct
60 Correct 44 ms 3048 KB correct
61 Correct 70 ms 5244 KB correct
62 Correct 70 ms 5324 KB correct
63 Correct 80 ms 5180 KB correct
64 Correct 67 ms 5120 KB correct
65 Correct 68 ms 5120 KB correct
66 Correct 71 ms 5204 KB correct
67 Correct 70 ms 5244 KB correct
68 Correct 72 ms 5196 KB correct
69 Correct 70 ms 5196 KB correct
70 Correct 0 ms 212 KB correct
71 Correct 73 ms 5136 KB correct
72 Correct 70 ms 5188 KB correct
73 Correct 0 ms 212 KB correct
74 Correct 72 ms 5236 KB correct
75 Runtime error 19 ms 7524 KB Execution killed with signal 11
76 Halted 0 ms 0 KB -