// 赤コーダーになりたい
// お願い いいですか?
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
// Pragmas
// #pragma GCC optimize("Ofast")
// #pragma GCC optimize("unroll-loops")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
// Namespaces
using namespace std;
using namespace __gnu_pbds;
// Data types
using si = short int;
using ll = long long;
using lll = __int128;
using ld = long double;
// Pairs
using pii = pair<int, int>;
using psi = pair<si, si>;
using pll = pair<ll, ll>;
using plll = pair<lll, lll>;
using pld = pair<ld, ld>;
#define fi first
#define se second
// For
#define Frue(i, n, N) for (int i = (n); i <= (N); i++)
#define Fru(i, n, N) for (int i = (n); i < (N); i++)
#define Frde(i, n, N) for (int i = (n); i >= (N); i--)
#define Frd(i, n, N) for (int i = (n); i > (N); i--)
// PBDS
template<typename Z>
using ordered_set = tree<Z, null_type, less<Z>, rb_tree_tag, tree_order_statistics_node_update>;
// Various outputs
template<typename Y, typename Z> ostream& operator<<(ostream &os, const pair<Y, Z> &p) {
return os << '(' << p.fi << ',' << p.se << ')';
}
template<typename Z> ostream& operator<<(ostream &os, const vector<Z> &v) {
os << '{'; bool _first = 1;
for (auto &i : v) {if (!_first) os << ", "; os << i; _first = 0;}
return os << '}';
}
template<typename Z, unsigned long long sz> ostream& operator<<(ostream &os, const array<Z, sz> &arr) {
os << '{'; bool _first = 1;
for (auto &i : arr) {if (!_first) os << ", "; os << i; _first = 0;}
return os << '}';
}
// Quick macro functions
#define sqr(x) ((x)*(x))
#define debug(x) cout << #x << " = " << (x) << '\n'
#define debugV(v, x) cout << #v << "[" << (x) << "] = " << (v[x]) << '\n'
#define rrebug(x) cerr << #x << " = " << (x) << '\n'
#define rrebugV(v, x) cerr << #v << "[" << (x) << "] = " << (v[x]) << '\n'
#define All(x) x.begin(), x.end()
#define Sort(x) sort(All(x))
#define Reverse(x) reverse(All(x))
#define Uniqueify(x) Sort(x); x.erase(unique(All(x)), x.end())
#define RandomSeed chrono::steady_clock::now().time_since_epoch().count()
#define MultipleTestcases int _tc; cin >> _tc; for (int _cur_tc = 1; _cur_tc <= _tc; _cur_tc++)
// Check min and max
template<typename Z> void chmin(Z &a, Z b) {a = min(a, b);}
template<typename Z> void chmax(Z &a, Z b) {a = max(a, b);}
// Modular arithmetic
template<int MOD>
class ModInt {
public:
int v;
ModInt() : v(0) {}
ModInt(long long _v) {
v = int((-MOD < _v && _v < MOD) ? (_v) : (_v % MOD));
if (v < 0) v += MOD;
}
friend bool operator==(const ModInt &a, const ModInt &b) {return a.v == b.v;}
friend bool operator!=(const ModInt &a, const ModInt &b) {return a.v != b.v;}
friend bool operator< (const ModInt &a, const ModInt &b) {return a.v < b.v;}
friend bool operator<=(const ModInt &a, const ModInt &b) {return a.v <= b.v;}
friend bool operator> (const ModInt &a, const ModInt &b) {return a.v > b.v;}
friend bool operator>=(const ModInt &a, const ModInt &b) {return a.v >= b.v;}
ModInt &operator+=(const ModInt &a) {if ((v += a.v) >= MOD) v -= MOD; return *this;}
ModInt &operator-=(const ModInt &a) {if ((v -= a.v) < 0) v += MOD; return *this;}
ModInt &operator*=(const ModInt &a) {v = 1ll * v * a.v % MOD; return *this;}
ModInt &operator/=(const ModInt &a) {return (*this) *= inverse(a);}
friend ModInt pow(ModInt a, long long x) {
ModInt res = 1;
for (; x; x /= 2, a *= a) if (x & 1) res *= a;
return res;
}
friend ModInt inverse(ModInt a) {return pow(a, MOD - 2);}
ModInt operator+ () const {return ModInt( v);}
ModInt operator- () const {return ModInt(-v);}
ModInt operator++() const {return *this += 1;}
ModInt operator--() const {return *this -= 1;}
friend ModInt operator+(ModInt a, const ModInt &b) {return a += b;}
friend ModInt operator-(ModInt a, const ModInt &b) {return a -= b;}
friend ModInt operator*(ModInt a, const ModInt &b) {return a *= b;}
friend ModInt operator/(ModInt a, const ModInt &b) {return a /= b;}
friend istream &operator>>(istream &is, ModInt &v) {return is >> v.v;}
friend ostream &operator<<(ostream &os, const ModInt &v) {return os << v.v;}
};
const int ModA = 998244353;
const int ModC = 1e9 + 7;
using MintA = ModInt<ModA>;
using MintC = ModInt<ModC>;
// Other constants
const ll INF = 1e18;
const ll iINF = 1e9;
const ld EPS = 1e-9;
const ld iEPS = 1e-6;
const int maxN = 2523;
int N, M;
char grid[maxN][maxN];
int up[maxN][maxN], dn[maxN][maxN], minH[maxN];
int boundH = iINF, boundW = iINF, ans = 0;
int main() {
ios_base::sync_with_stdio(false); cin.tie(NULL);
cin >> N >> M;
for (int i = 1; i <= N; i++) {
for (int j = 1; j <= M; j++) {
cin >> grid[i][j];
}
}
// Precompute up, dn, and boundH
for (int j = 1; j <= M; j++) {
for (int i = 1; i <= N; i++) {
if (grid[i][j] == '0') {
up[i][j] = 0;
} else {
up[i][j] = up[i-1][j] + 1;
if ((i == N) || (grid[i+1][j] == '0')) {
boundH = min(boundH, up[i][j]);
}
}
}
for (int i = N; i >= 1; i--) {
if (grid[i][j] == '0') {
dn[i][j] = 0;
} else {
dn[i][j] = dn[i+1][j] + 1;
}
}
}
// Precompute boundW
for (int i = 1; i <= N; i++) {
int span = 0;
for (int j = 1; j <= M; j++) {
if (grid[i][j] == '0') {
span = 0;
} else {
span += 1;
if ((j == M) || (grid[i][j+1] == '0')) {
boundW = min(boundW, span);
}
}
}
}
// Compute minH for each horizontal prefix and suffix
for (int j = 1; j <= M; j++) {
minH[j] = boundH;
}
for (int i = 1; i <= N; i++) {
int span = 0, mnUp = iINF, mnDn = iINF;
for (int j = 1; j <= M; j++) {
if (grid[i][j] == '0') {
span = 0, mnUp = iINF, mnDn = iINF;
} else {
span += 1;
mnUp = min(mnUp, up[i][j]);
mnDn = min(mnDn, dn[i][j]);
minH[span] = min(minH[span], mnUp + mnDn - 1);
}
}
span = 0, mnUp = iINF, mnDn = iINF;
for (int j = M; j >= 1; j--) {
if (grid[i][j] == '0') {
span = 0, mnUp = iINF, mnDn = iINF;
} else {
span += 1;
mnUp = min(mnUp, up[i][j]);
mnDn = min(mnDn, dn[i][j]);
minH[span] = min(minH[span], mnUp + mnDn - 1);
}
}
}
for (int j = 1; j <= boundW; j++) {
ans = max(ans, minH[j] * j);
}
cout << ans << '\n';
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
340 KB |
Output is correct |
2 |
Correct |
1 ms |
468 KB |
Output is correct |
3 |
Correct |
9 ms |
26580 KB |
Output is correct |
4 |
Correct |
9 ms |
26496 KB |
Output is correct |
5 |
Correct |
0 ms |
340 KB |
Output is correct |
6 |
Correct |
0 ms |
340 KB |
Output is correct |
7 |
Correct |
0 ms |
340 KB |
Output is correct |
8 |
Correct |
0 ms |
468 KB |
Output is correct |
9 |
Correct |
0 ms |
468 KB |
Output is correct |
10 |
Correct |
1 ms |
468 KB |
Output is correct |
11 |
Correct |
1 ms |
468 KB |
Output is correct |
12 |
Correct |
0 ms |
468 KB |
Output is correct |
13 |
Correct |
1 ms |
404 KB |
Output is correct |
14 |
Correct |
1 ms |
468 KB |
Output is correct |
15 |
Correct |
0 ms |
468 KB |
Output is correct |
16 |
Correct |
0 ms |
468 KB |
Output is correct |
17 |
Correct |
1 ms |
980 KB |
Output is correct |
18 |
Correct |
1 ms |
980 KB |
Output is correct |
19 |
Correct |
1 ms |
1364 KB |
Output is correct |
20 |
Correct |
1 ms |
1236 KB |
Output is correct |
21 |
Correct |
1 ms |
852 KB |
Output is correct |
22 |
Correct |
1 ms |
1108 KB |
Output is correct |
23 |
Correct |
1 ms |
1364 KB |
Output is correct |
24 |
Correct |
1 ms |
1236 KB |
Output is correct |
25 |
Correct |
1 ms |
1364 KB |
Output is correct |
26 |
Correct |
1 ms |
1364 KB |
Output is correct |
27 |
Correct |
3 ms |
3924 KB |
Output is correct |
28 |
Correct |
5 ms |
4180 KB |
Output is correct |
29 |
Correct |
5 ms |
5332 KB |
Output is correct |
30 |
Correct |
5 ms |
6228 KB |
Output is correct |
31 |
Correct |
4 ms |
4948 KB |
Output is correct |
32 |
Correct |
4 ms |
5716 KB |
Output is correct |
33 |
Correct |
5 ms |
6612 KB |
Output is correct |
34 |
Correct |
3 ms |
4692 KB |
Output is correct |
35 |
Correct |
5 ms |
6556 KB |
Output is correct |
36 |
Correct |
6 ms |
6612 KB |
Output is correct |
37 |
Correct |
1 ms |
468 KB |
Output is correct |
38 |
Correct |
238 ms |
55964 KB |
Output is correct |
39 |
Correct |
0 ms |
468 KB |
Output is correct |
40 |
Correct |
23 ms |
15448 KB |
Output is correct |
41 |
Correct |
0 ms |
468 KB |
Output is correct |
42 |
Correct |
1 ms |
1364 KB |
Output is correct |
43 |
Correct |
226 ms |
55756 KB |
Output is correct |
44 |
Correct |
6 ms |
6612 KB |
Output is correct |
45 |
Correct |
256 ms |
55860 KB |
Output is correct |
46 |
Correct |
233 ms |
55852 KB |
Output is correct |
47 |
Correct |
232 ms |
55768 KB |
Output is correct |
48 |
Correct |
273 ms |
55876 KB |
Output is correct |
49 |
Correct |
234 ms |
55864 KB |
Output is correct |
50 |
Correct |
234 ms |
55900 KB |
Output is correct |
51 |
Correct |
259 ms |
55828 KB |
Output is correct |
52 |
Correct |
237 ms |
55868 KB |
Output is correct |
53 |
Correct |
240 ms |
55756 KB |
Output is correct |
54 |
Correct |
231 ms |
55772 KB |
Output is correct |
55 |
Correct |
232 ms |
55808 KB |
Output is correct |
56 |
Correct |
240 ms |
55992 KB |
Output is correct |
57 |
Correct |
240 ms |
55960 KB |
Output is correct |
58 |
Correct |
242 ms |
55808 KB |
Output is correct |
59 |
Correct |
223 ms |
55864 KB |
Output is correct |
60 |
Correct |
227 ms |
55860 KB |
Output is correct |
61 |
Correct |
228 ms |
55876 KB |
Output is correct |
62 |
Correct |
234 ms |
55780 KB |
Output is correct |
63 |
Correct |
270 ms |
55860 KB |
Output is correct |
64 |
Correct |
305 ms |
55872 KB |
Output is correct |
65 |
Correct |
234 ms |
55860 KB |
Output is correct |
66 |
Correct |
250 ms |
55860 KB |
Output is correct |
67 |
Correct |
234 ms |
55760 KB |
Output is correct |
68 |
Correct |
236 ms |
55864 KB |
Output is correct |
69 |
Correct |
218 ms |
55860 KB |
Output is correct |
70 |
Correct |
140 ms |
44752 KB |
Output is correct |
71 |
Correct |
222 ms |
55840 KB |
Output is correct |
72 |
Correct |
214 ms |
55976 KB |
Output is correct |
73 |
Correct |
265 ms |
55848 KB |
Output is correct |
74 |
Correct |
229 ms |
55860 KB |
Output is correct |
75 |
Correct |
230 ms |
55864 KB |
Output is correct |
76 |
Correct |
252 ms |
55828 KB |
Output is correct |
77 |
Correct |
230 ms |
55860 KB |
Output is correct |
78 |
Correct |
247 ms |
55872 KB |
Output is correct |
79 |
Correct |
219 ms |
55776 KB |
Output is correct |
80 |
Correct |
219 ms |
55860 KB |
Output is correct |
81 |
Correct |
208 ms |
55760 KB |
Output is correct |
82 |
Correct |
223 ms |
55820 KB |
Output is correct |
83 |
Correct |
225 ms |
55956 KB |
Output is correct |
84 |
Correct |
214 ms |
55876 KB |
Output is correct |
85 |
Correct |
238 ms |
55864 KB |
Output is correct |
86 |
Correct |
239 ms |
55860 KB |
Output is correct |
87 |
Correct |
235 ms |
55868 KB |
Output is correct |
88 |
Correct |
280 ms |
55760 KB |
Output is correct |
89 |
Correct |
230 ms |
55864 KB |
Output is correct |
90 |
Correct |
147 ms |
44648 KB |
Output is correct |
91 |
Correct |
242 ms |
55756 KB |
Output is correct |
92 |
Correct |
231 ms |
55752 KB |
Output is correct |
93 |
Correct |
241 ms |
55824 KB |
Output is correct |
94 |
Correct |
233 ms |
55856 KB |
Output is correct |
95 |
Correct |
312 ms |
55864 KB |
Output is correct |
96 |
Correct |
272 ms |
55864 KB |
Output is correct |
97 |
Correct |
241 ms |
55788 KB |
Output is correct |
98 |
Correct |
230 ms |
55852 KB |
Output is correct |
99 |
Correct |
216 ms |
55872 KB |
Output is correct |
100 |
Correct |
228 ms |
55864 KB |
Output is correct |