Submission #831045

# Submission time Handle Problem Language Result Execution time Memory
831045 2023-08-19T15:45:34 Z grogu Ancient Machine 2 (JOI23_ancient2) C++17
10 / 100
106 ms 788 KB
#include "ancient2.h"
#define here cerr<<"===========================================\n"
#define dbg(x) cerr<<#x<<": "<<x<<endl;
#include <bits/stdc++.h>
#define ld double
#define ll int
#define ull unsigned long long
#define llinf 100000000000000000LL // 10^17
#define iinf 2000000000 // 2*10^9
#define pb push_back
#define eb emplace_back
#define popb pop_back
#define fi first
#define sc second
#define endl '\n'
#define pii pair<int,int>
#define pll pair<ll,ll>
#define pld pair<ld,ld>
#define all(a) a.begin(),a.end()
#define ceri(a,l,r) {cerr<<#a<<": ";for(ll i_ = l;i_<=r;i_++) cerr<<a[i_]<< " ";cerr<<endl;}
#define cer(a) {cerr<<#a<<": ";for(ll x_ : a) cerr<<x_<< " ";cerr<<endl;}
#define si(a) (ll)(a.size())
using namespace std;
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
ll rnd(ll l,ll r){
    return uniform_int_distribution<ll>(l,r)(rng);
}
#define mod 1000000007
ll add(ll x,ll y){
    x+=y;
    if(x<0){
        x%=mod;
        x+=mod;
    }else{
        if(x>=mod) x%=mod;
    }
    return x;
}
ll mul(ll a,ll b){
	long long ans = (((long long)a)*((long long)b))%mod;
	if(ans<0) ans+=mod;
	return ans;
}
ll po(ll x,ll y){
    if(y==0) return 1LL;
    ll ans = po(x,y/2);
    ans = mul(ans,ans);
    if(y&1) ans = mul(ans,x);
    return ans;
}
ll inv(ll x){return po(x,mod-2);}
#define maxn 1005
ll n;
ll a[maxn];
ll dp[maxn];
pll opt[maxn];
ll p;
ll hsh[maxn];
ll powe[maxn];
ll get(ll l,ll r){
    return add(hsh[r],-mul(powe[r-l+1],hsh[l-1]));
}
ll ls[maxn],rs[maxn];
ll tsz = 0;
string Solve(int N) {
    powe[0] = 1;
    p = rnd(2,mod-1);
    for(ll i = 1;i<maxn;i++) powe[i] = mul(powe[i-1],p);
    n = N;
    dp[0] = 0;
    opt[0] = {-1,-1};
    for(ll i = 0;i<n;i++){
        //ceri(a,0,i-1);
        //here;
        //dbg(i);
        if(i==0){
            vector<ll> b = {1,1,2};
            vector<ll> c = {2,1,2};
            ll x = Query(3,b,c);
            if(x==1) a[i] = 0;
            else a[i] = 1;
        }else{
            ll m = i-1;
            ll tsz = 0;
            ll last = 3;
            ls[last] = 1;
            rs[last] = 2;
            ls[2] = rs[2] = 2;
            ls[1] = rs[1] = 1;
            tsz = 3;
            //dbg(i);
            //dbg(m);
            while(m!=-1){
                pll p = opt[m];
                //cerr<<m<< " "<<p.fi<< " "<<p.sc<<" "<<last<<endl;
                if(p.sc==-1){
                    while(m>p.fi){
                        ++tsz;
                        if(a[m]==1) rs[tsz] = last;
                        else ls[tsz] = last;
                        last = tsz;
                        m--;
                    }
                }else{
                    ll len = p.sc;
                    ll r = m-1,l = m-len;
                    ll curlast = ++tsz;
                    ll en = curlast;
                    r--;
                    while(r>=l){
                        ++tsz;
                        if(a[r]==1) rs[tsz] = curlast;
                        else ls[tsz] = curlast;
                        curlast = tsz;
                        r--;
                    }
                    r = m;
                    if(a[m]==1) rs[en] = curlast,ls[en] = last;
                    else ls[en] = curlast,rs[en] = last;
                    last = curlast;
                    /**
                    ll poc = tsz;
                    ll r = m+1;
                    while(r<i&&a[l]==a[r]){
                        l++;
                        r++;
                    }
                    if(a[l]!=a[r]){
                        if(a[r]==1) rs[tsz] = last;
                        else ls[tsz] = last;
                    }
                    last = nlast;
                    **/
                }
                m = p.fi;
            }
            vector<ll> b,c;
            for(ll i = 1;i<=tsz;i++){
                ll x = tsz-i+1;
                ll valb = 0,valc = 0;
                if(ls[x]!=0) valb = tsz-ls[x];
                if(rs[x]!=0) valc = tsz-rs[x];
                b.pb(valb);
                c.pb(valc);
            }
            //dbg(tsz);
            //cer(b);
            //cer(c);
            ll x = Query(tsz,b,c);
            //dbg(x);
            //dbg(b.back());
            if(x==b.back()) a[i] = 0;
            else a[i] = 1;
            for(ll i = 0;i<=tsz;i++) ls[i] = rs[i] = 0;
            tsz = 0;
        }
        lol:;
        if(i>1){
            i--;
            for(ll l = i;l>=0;l--){
                ll len = i-l+1;
                if(a[l]==a[i+1]) continue;
                for(ll l2 = l;l2>=0;l2-=len){
                    if(get(l2,l2+len-1)==get(l,i)){
                        if(l2==l) continue;
                        ll val = (l2>0?dp[l2-1]:0);
                        if(val+len<dp[i+1]){
                            dp[i+1] = val+len;
                            opt[i+1] = {l2-1,len};
                        }
                    }else break;
                }
            }
            i++;
        }
        hsh[i] = add(mul(hsh[i-1],p),a[i]);
        dp[i] = llinf;
        for(ll l = i;l>=0;l--){
            ll val = (l>0?dp[l-1]:0);
            if(val+i-l+1<dp[i]){
                dp[i] = val+i-l+1;
                opt[i] = {l-1,-1};
            }
        }
    }
    ceri(dp,1,n);
    string ans;
    for(ll i = 0;i<n;i++) ans+=('0'+a[i]);
    //ceri(a,0,n-1);
    //dbg(ans);
    return ans;

}
/**
3
110

10
1001101011
**/

Compilation message

ancient2.cpp: In function 'std::string Solve(int)':
ancient2.cpp:8:15: warning: overflow in conversion from 'long long int' to 'int' changes value from '100000000000000000' to '1569325056' [-Woverflow]
    8 | #define llinf 100000000000000000LL // 10^17
      |               ^~~~~~~~~~~~~~~~~~~~
ancient2.cpp:177:17: note: in expansion of macro 'llinf'
  177 |         dp[i] = llinf;
      |                 ^~~~~
ancient2.cpp:157:9: warning: label 'lol' defined but not used [-Wunused-label]
  157 |         lol:;
      |         ^~~
# Verdict Execution time Memory Grader output
1 Partially correct 84 ms 408 KB Output is partially correct
2 Partially correct 84 ms 408 KB Output is partially correct
3 Partially correct 83 ms 572 KB Output is partially correct
4 Partially correct 77 ms 408 KB Output is partially correct
5 Partially correct 82 ms 404 KB Output is partially correct
6 Partially correct 81 ms 412 KB Output is partially correct
7 Partially correct 80 ms 408 KB Output is partially correct
8 Partially correct 83 ms 408 KB Output is partially correct
9 Partially correct 80 ms 404 KB Output is partially correct
10 Partially correct 88 ms 404 KB Output is partially correct
11 Partially correct 84 ms 408 KB Output is partially correct
12 Partially correct 81 ms 408 KB Output is partially correct
13 Partially correct 97 ms 404 KB Output is partially correct
14 Partially correct 81 ms 520 KB Output is partially correct
15 Partially correct 78 ms 404 KB Output is partially correct
16 Partially correct 83 ms 404 KB Output is partially correct
17 Partially correct 81 ms 404 KB Output is partially correct
18 Partially correct 84 ms 516 KB Output is partially correct
19 Partially correct 84 ms 404 KB Output is partially correct
20 Partially correct 83 ms 412 KB Output is partially correct
21 Partially correct 82 ms 408 KB Output is partially correct
22 Partially correct 83 ms 404 KB Output is partially correct
23 Partially correct 84 ms 400 KB Output is partially correct
24 Partially correct 82 ms 392 KB Output is partially correct
25 Partially correct 95 ms 520 KB Output is partially correct
26 Partially correct 84 ms 400 KB Output is partially correct
27 Partially correct 87 ms 404 KB Output is partially correct
28 Partially correct 94 ms 512 KB Output is partially correct
29 Partially correct 81 ms 396 KB Output is partially correct
30 Partially correct 86 ms 400 KB Output is partially correct
31 Partially correct 83 ms 404 KB Output is partially correct
32 Partially correct 82 ms 404 KB Output is partially correct
33 Partially correct 83 ms 408 KB Output is partially correct
34 Partially correct 83 ms 404 KB Output is partially correct
35 Partially correct 82 ms 412 KB Output is partially correct
36 Partially correct 84 ms 512 KB Output is partially correct
37 Partially correct 81 ms 380 KB Output is partially correct
38 Partially correct 84 ms 400 KB Output is partially correct
39 Partially correct 106 ms 652 KB Output is partially correct
40 Partially correct 84 ms 400 KB Output is partially correct
41 Partially correct 87 ms 400 KB Output is partially correct
42 Partially correct 87 ms 408 KB Output is partially correct
43 Partially correct 84 ms 400 KB Output is partially correct
44 Partially correct 84 ms 408 KB Output is partially correct
45 Partially correct 92 ms 404 KB Output is partially correct
46 Partially correct 93 ms 780 KB Output is partially correct
47 Partially correct 89 ms 408 KB Output is partially correct
48 Partially correct 87 ms 404 KB Output is partially correct
49 Partially correct 86 ms 408 KB Output is partially correct
50 Partially correct 87 ms 408 KB Output is partially correct
51 Partially correct 86 ms 400 KB Output is partially correct
52 Partially correct 84 ms 404 KB Output is partially correct
53 Partially correct 86 ms 788 KB Output is partially correct
54 Partially correct 83 ms 408 KB Output is partially correct
55 Partially correct 88 ms 404 KB Output is partially correct
56 Partially correct 85 ms 404 KB Output is partially correct
57 Partially correct 75 ms 404 KB Output is partially correct
58 Partially correct 84 ms 412 KB Output is partially correct
59 Partially correct 77 ms 404 KB Output is partially correct
60 Partially correct 90 ms 408 KB Output is partially correct
61 Partially correct 82 ms 404 KB Output is partially correct
62 Partially correct 85 ms 396 KB Output is partially correct
63 Partially correct 83 ms 408 KB Output is partially correct