Submission #829139

# Submission time Handle Problem Language Result Execution time Memory
829139 2023-08-18T05:21:40 Z roseanne_pcy Koala Game (APIO17_koala) C++14
93 / 100
52 ms 440 KB
#include "koala.h"
 
#include <bits/stdc++.h>
 
using namespace std;
 
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef long long ll;
 
#define f first
#define s second
#define pb push_back
#define lb lower_bound
#define ub upper_bound
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
 
const int MAXN = 105;
 
int play[MAXN];
int res[MAXN];
int tmp[MAXN];

int calls = 0;
 
void reset(int n) {
    for (int i = 0; i< n; i++) {
        play[i] = res[i] = 0;
    }
}

void knapsack(int *B, int *R) {
    int N = 100;
    int W = 100;
    int P[105];
    for(int i = 0; i< N; i++) P[i] = i+1;
    int cache[2][205];
    int num[2][205];
    char taken[105][205];

    for (int i=0;i<205;++i) {
        cache[1][i] = 0;
        num[1][i] = 0;
    }

    for (int i=0;i<N;++i) {
        int v = B[i]+1;
        int ii = i&1;
        int o = ii^1;
        for (int j=0;j<=W;++j) {
            cache[ii][j] = cache[o][j];
            num[ii][j] = num[o][j];
            taken[i][j] = 0;
        }
        for (int j=W;j>=v;--j) {
            int h = cache[o][j-v] + P[i];
            int hn = num[o][j-v] + 1;
            if (h > cache[ii][j] || (h == cache[ii][j] && hn > num[ii][j])) {
                cache[ii][j] = h;
                num[ii][j] = hn;
                taken[i][j] = 1;
            } else {
                taken[i][j] = 0;
            }
        }
    }

    int cur = W;
    for (int i=N-1;i>=0;--i) {
        R[i] = taken[i][cur] ? (B[i] + 1) : 0;
        cur -= R[i];
    }
}

int retMin[105][105];
int retMax[105][105];
int ret[105];

void precompute_all() {
    int n = 100;
    for (int i = 0; i < n; i++) { 
        for (int j = i+1; j< n; j++) {   
            for (int k = 1; k<= 9; k++) {
                reset(n);
                play[i] = play[j] = k;
                knapsack(play, res);
                if (res[j] > k && res[i] <= k) {
                    retMin[i][j] = k;
                    break;
                }
            }
            for (int k = 9; k >= 1; k--) {
                reset(n);
                play[i] = play[j] = k;
                knapsack(play, res);
                if (res[j] > k && res[i] <= k) {
                    retMax[i][j] = k;
                    break;
                }
            }
        }
        for (int j = i+2; j< n; j++) {
            assert(retMin[i][i+1] == retMin[i][j]);
            assert(retMax[i][i+1] <= retMax[i][j]);
        }
    }

    for (int i = 0; i < n; i++) {
        for (int j = i+1; j< n; j++) {
            assert(retMin[i][i+1] <= retMin[i][j] && retMin[i][j] <= retMin[j-1][j]);
        }
    }

    // for (int j = 1; j< n; j++) {
    //     for(int i = 0; i < j-1; i++) {
    //         assert(retMax[j-1][j] == retMax[i][j]);
    //     }
    // }
}

void precompute() {
    int n = 100;
    for (int i = 0; i < n; i++) { 
        int j = i+1;  
        for (int k = 1; k<= 9; k++) {
            reset(n);
            play[i] = play[j] = k;
            knapsack(play, res);
            if (res[j] > k && res[i] <= k) {
                ret[i] = k;
                break;
            }
        }
    }
}
 
int minValue(int N, int W) {
    int n = N;
    play[0] = 1;
    playRound(play, res);
    for (int i = 0; i < n; i++) {
        if (res[i] == 0) {
            return i;
        }
    }
    reset(N);
    play[1] = 1;
    playRound(play, res);
    for (int i = 0; i < n; i++) {
        if (res[i] == 0) {
            return i;
        }
    }
    return -1;
}
 
int maxValue(int N, int W) {
    int n = N;
    for (int i = 0; i < n; i++) {
        play[i] = 1;
    }
    playRound(play, res);
    set <int> pots;
    for (int i = 0; i< n; i++) {
        if (res[i] > 0) {
            pots.insert(i);
        }
    }
 
    int times = 3;
    while(times--) {  
        reset(N);
        for (int x : pots) {
            play[x] = W/(pots.size());
        }
 
        playRound(play, res);
 
        set <int> newpots;
        for (int i = 0; i< n; i++) {
            if (res[i] > 0 && (pots.find(i) != pots.end())) {
                newpots.insert(i);
            }
        }
        pots = newpots;
    }
    return *(pots.begin());
}
 
int greaterValue(int N, int W) {
    int n = N;
    int lo = 1, hi = 9;
    while (lo < hi) {
        int mid = (lo+hi)/2;
        reset(n);
        play[0] = play[1] = mid;
        for (int i = 2; i< n; i++) {
            play[i] = 0;
        }
        playRound(play, res);
        if (res[0] != res[1]) {
            if (res[0] > res[1]) {
                return 0;
            } else {
                return 1;
            }
        } else {
            if (res[0] == 0) {
                hi = mid-1;
            } else {
                lo = mid+1;
            }
        }
    }
}
 
bool isLessThan(int x, int y, int N, int ori_lo, int ori_hi) {
    int n = N;
    int lo = ori_lo, hi = ori_hi;
    while (lo <= hi) {
        int mid = (lo+hi)/2;
        reset(n);
        play[x] = play[y] = mid;
        playRound(play, res);
        calls++;
        if (res[x] != res[y]) {
            if (res[x] > res[y]) {
                return false;
            } else {
                return true;
            }
        } else {
            if (res[x] == 0) {
                hi = mid-1;
            } else {
                lo = mid+1;
            }
        }
    }
    assert(false);
}
 
void solveClassic(int *P, int L, int R, int N) {
    if (L == R) {
        return;
    }
    // printf("called %d %d\n", L, R);
    int mid = (L+R)/2;
    solveClassic(P, L, mid, N);
    solveClassic(P, mid+1, R, N);
 
    int i = L, j = mid+1;
    int cur = L;
    while(i <= mid && j <= R) {
        int lo = ret[L]-1;
        int hi = ret[R-1]+1;
        // int lo = 1;
        // int hi = 9;
        // printf("%d %d\n", L, R);
        if(isLessThan(P[i], P[j], N, lo, hi)) {
            tmp[cur++] = P[i++];
        } else {
            tmp[cur++] = P[j++];
        }
    }
    while(i <= mid) {
        tmp[cur++] = P[i++];
    }
    while(j <= R) {
        tmp[cur++] = P[j++];
    }
 
    for (int i = L; i<= R; i++) {
        P[i] = tmp[i];
    }
 
    return;
}

void solve(int *P, int L, int R, int N, int W) {
    if (L == R) {
        return;
    }
    reset(N);
    for (int i = L; i <= R; i++) {
        play[P[i]] = W/(R-L+1);
    }
    playRound(play, res);
    calls++;
    vector<int> good, bad;
    for (int i = L; i <= R; i++) {
        if (res[P[i]] > 0) {
            good.push_back(P[i]);
        } else {
            bad.push_back(P[i]);
        }
    }
    if ((int) good.size() == 0 || (int) bad.size() == 0) {
        // printf("%d %d can't go\n", L, R);
        solveClassic(P, L, R, N);
        return;
    }


    int cur = L;
    for (int i = 0; i< (int) bad.size(); i++) {
        P[cur++] = bad[i];
    }
    for (int i = 0; i< (int) good.size(); i++) {
        P[cur++] = good[i];
    }
    solve(P, L, L+bad.size()-1, N, W);
    // printf("solved %d %d: %d\n", L, L+bad.size()-1, calls);
    solve(P, L+bad.size(), R, N, W);
    // printf("solved %d %d: %d\n", L+bad.size(), R, calls);
}

void solve_subtask4(int N, int W, int *P) {
    for (int i = 0; i < N; i++) {
        P[i] = -1;
    }
    for (int i = 0; i < N; i++) {
        set<int> pots;
        for (int j = 0; j < N; j++) {
            pots.insert(j);
        }

        while(true) {
            int remcnt = 0;
            for (int x : pots) {
                if (P[x] == -1) {
                    remcnt++;
                }
            }
            if (remcnt == 1) {
                break;
            }
            reset(N);
            for (int x : pots) {
                if (P[x] == -1) {
                    play[x] = W/remcnt;
                }
            }
            playRound(play, res);
            set<int> newpots;
            for (int j = 0; j< N; j++) {
                if (res[j] > 0 && pots.find(j) != pots.end()) {
                    newpots.insert(j);
                }
            }
            pots = newpots;
        }
        set<int> newpots;
        for (int j: pots) {
            if (P[j] == -1) {
                newpots.insert(j);
            }
        }
        pots = newpots;
        P[*(pots.begin())] = N-i;
        // printf("%d: %d\n", *pots.begin(), N-i);
    }
}

void allValues(int N, int W, int *P) {
    precompute();
    for (int i = 0; i < N; i++) {
        P[i] = i;
    }
    if (W == 2*N) {
        solve_subtask4(N, W, P);
    } else {
        solve(P, 0, N-1, N, W);
        for (int i = 0; i < N; i++) {
            tmp[P[i]] = i;
        }
        for (int i = 0; i < N; i++) {
            P[i] = tmp[i] + 1;
        }
    }
}

Compilation message

koala.cpp: In function 'int greaterValue(int, int)':
koala.cpp:216:1: warning: control reaches end of non-void function [-Wreturn-type]
  216 | }
      | ^
# Verdict Execution time Memory Grader output
1 Correct 3 ms 208 KB Output is correct
2 Correct 3 ms 208 KB Output is correct
3 Correct 3 ms 208 KB Output is correct
4 Correct 3 ms 316 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 324 KB Output is correct
2 Correct 11 ms 208 KB Output is correct
3 Correct 11 ms 328 KB Output is correct
4 Correct 10 ms 320 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 46 ms 440 KB Output is correct
2 Correct 47 ms 324 KB Output is correct
3 Correct 40 ms 332 KB Output is correct
4 Correct 46 ms 332 KB Output is correct
5 Correct 46 ms 332 KB Output is correct
6 Correct 41 ms 328 KB Output is correct
7 Correct 40 ms 328 KB Output is correct
8 Correct 43 ms 328 KB Output is correct
9 Correct 41 ms 336 KB Output is correct
10 Correct 39 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 51 ms 304 KB Output is correct
2 Correct 45 ms 320 KB Output is correct
3 Correct 46 ms 208 KB Output is correct
4 Correct 45 ms 208 KB Output is correct
5 Correct 45 ms 308 KB Output is correct
6 Correct 45 ms 316 KB Output is correct
7 Correct 52 ms 320 KB Output is correct
8 Correct 45 ms 320 KB Output is correct
9 Correct 45 ms 208 KB Output is correct
10 Correct 44 ms 208 KB Output is correct
11 Correct 45 ms 316 KB Output is correct
12 Correct 43 ms 320 KB Output is correct
13 Correct 46 ms 316 KB Output is correct
14 Correct 44 ms 316 KB Output is correct
15 Correct 44 ms 208 KB Output is correct
16 Correct 44 ms 304 KB Output is correct
17 Correct 44 ms 208 KB Output is correct
18 Correct 44 ms 316 KB Output is correct
19 Correct 45 ms 308 KB Output is correct
20 Correct 44 ms 320 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 17 ms 316 KB Output is partially correct
2 Partially correct 17 ms 320 KB Output is partially correct
3 Partially correct 17 ms 208 KB Output is partially correct
4 Partially correct 17 ms 324 KB Output is partially correct
5 Partially correct 17 ms 320 KB Output is partially correct
6 Partially correct 17 ms 208 KB Output is partially correct
7 Partially correct 17 ms 316 KB Output is partially correct
8 Partially correct 17 ms 312 KB Output is partially correct
9 Partially correct 17 ms 324 KB Output is partially correct
10 Partially correct 17 ms 320 KB Output is partially correct
11 Partially correct 17 ms 308 KB Output is partially correct
12 Partially correct 16 ms 316 KB Output is partially correct
13 Partially correct 17 ms 208 KB Output is partially correct
14 Partially correct 17 ms 304 KB Output is partially correct
15 Partially correct 17 ms 208 KB Output is partially correct
16 Partially correct 20 ms 316 KB Output is partially correct
17 Partially correct 17 ms 316 KB Output is partially correct
18 Partially correct 17 ms 316 KB Output is partially correct
19 Partially correct 19 ms 312 KB Output is partially correct
20 Partially correct 17 ms 320 KB Output is partially correct
21 Partially correct 17 ms 208 KB Output is partially correct
22 Partially correct 18 ms 312 KB Output is partially correct
23 Partially correct 17 ms 320 KB Output is partially correct
24 Partially correct 17 ms 320 KB Output is partially correct
25 Partially correct 17 ms 316 KB Output is partially correct
26 Partially correct 17 ms 312 KB Output is partially correct
27 Partially correct 17 ms 320 KB Output is partially correct
28 Partially correct 18 ms 208 KB Output is partially correct
29 Partially correct 17 ms 316 KB Output is partially correct
30 Partially correct 17 ms 316 KB Output is partially correct
31 Partially correct 18 ms 316 KB Output is partially correct
32 Partially correct 17 ms 208 KB Output is partially correct
33 Partially correct 17 ms 320 KB Output is partially correct
34 Partially correct 17 ms 208 KB Output is partially correct
35 Partially correct 17 ms 320 KB Output is partially correct
36 Partially correct 17 ms 312 KB Output is partially correct
37 Partially correct 17 ms 316 KB Output is partially correct
38 Partially correct 17 ms 320 KB Output is partially correct
39 Partially correct 17 ms 320 KB Output is partially correct
40 Partially correct 17 ms 320 KB Output is partially correct