Submission #829058

# Submission time Handle Problem Language Result Execution time Memory
829058 2023-08-18T03:05:08 Z roseanne_pcy Koala Game (APIO17_koala) C++14
81 / 100
45 ms 352 KB
#include "koala.h"
 
#include <bits/stdc++.h>
 
using namespace std;
 
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef long long ll;
 
#define f first
#define s second
#define pb push_back
#define lb lower_bound
#define ub upper_bound
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
 
const int MAXN = 105;
 
int play[MAXN];
int res[MAXN];
int tmp[MAXN];
 
void reset(int n) {
    for (int i = 0; i< n; i++) {
        play[i] = res[i] = 0;
    }
}
 
int minValue(int N, int W) {
    int n = N;
    play[0] = 1;
    playRound(play, res);
    for (int i = 0; i < n; i++) {
        if (res[i] == 0) {
            return i;
        }
    }
    reset(N);
    play[1] = 1;
    playRound(play, res);
    for (int i = 0; i < n; i++) {
        if (res[i] == 0) {
            return i;
        }
    }
    return -1;
}
 
int maxValue(int N, int W) {
    int n = N;
    for (int i = 0; i < n; i++) {
        play[i] = 1;
    }
    playRound(play, res);
    set <int> pots;
    for (int i = 0; i< n; i++) {
        if (res[i] > 0) {
            pots.insert(i);
        }
    }
 
    int times = 3;
    while(times--) {  
        reset(N);
        for (int x : pots) {
            play[x] = W/(pots.size());
        }
 
        playRound(play, res);
 
        set <int> newpots;
        for (int i = 0; i< n; i++) {
            if (res[i] > 0 && (pots.find(i) != pots.end())) {
                newpots.insert(i);
            }
        }
        pots = newpots;
    }
    return *(pots.begin());
}
 
int greaterValue(int N, int W) {
    int n = N;
    int lo = 1, hi = 14;
    while (lo < hi) {
        int mid = (lo+hi)/2;
        reset(n);
        play[0] = play[1] = mid;
        for (int i = 2; i< n; i++) {
            play[i] = 0;
        }
        playRound(play, res);
        if (res[0] != res[1]) {
            if (res[0] > res[1]) {
                return 0;
            } else {
                return 1;
            }
        } else {
            if (res[0] == 0) {
                hi = mid-1;
            } else {
                lo = mid+1;
            }
        }
    }
}
 
bool isLessThan(int x, int y, int hi_lim, int N) {
    int n = N;
    int lo = 1, hi = hi_lim;
    while (lo < hi) {
        int mid = (lo+hi)/2;
        reset(n);
        play[x] = play[y] = mid;
        playRound(play, res);
        if (res[x] != res[y]) {
            if (res[x] > res[y]) {
                return false;
            } else {
                return true;
            }
        } else {
            if (res[x] == 0) {
                hi = mid-1;
            } else {
                lo = mid+1;
            }
        }
    }
}
 
void solve(int *P, int L, int R, int N, int hi_lim) {
    if (L == R) {
        return;
    }
    // printf("called %d %d\n", L, R);
    int mid = (L+R)/2;
    solve(P, L, mid, N, hi_lim);
    solve(P, mid+1, R, N, hi_lim);
 
    int i = L, j = mid+1;
    int cur = L;
    while(i <= mid && j <= R) {
        if(isLessThan(P[i], P[j], hi_lim, N)) {
            tmp[cur++] = P[i++];
        } else {
            tmp[cur++] = P[j++];
        }
    }
    while(i <= mid) {
        tmp[cur++] = P[i++];
    }
    while(j <= R) {
        tmp[cur++] = P[j++];
    }
 
    for (int i = L; i<= R; i++) {
        P[i] = tmp[i];
    }
 
    return;
}

void solve_subtask4(int N, int W, int *P) {
    for (int i = 0; i < N; i++) {
        P[i] = -1;
    }
    for (int i = 0; i < N; i++) {
        set<int> pots;
        for (int j = 0; j < N; j++) {
            pots.insert(j);
        }

        while(true) {
            int remcnt = 0;
            for (int x : pots) {
                if (P[x] == -1) {
                    remcnt++;
                }
            }
            if (remcnt == 1) {
                break;
            }
            reset(N);
            for (int x : pots) {
                if (P[x] == -1) {
                    play[x] = W/remcnt;
                }
            }
            playRound(play, res);
            set<int> newpots;
            for (int j = 0; j< N; j++) {
                if (res[j] > 0 && pots.find(j) != pots.end()) {
                    newpots.insert(j);
                }
            }
            pots = newpots;
        }
        set<int> newpots;
        for (int j: pots) {
            if (P[j] == -1) {
                newpots.insert(j);
            }
        }
        pots = newpots;
        P[*(pots.begin())] = N-i;
        // printf("%d: %d\n", *pots.begin(), N-i);
    }
}

void allValues(int N, int W, int *P) {
    for (int i = 0; i < N; i++) {
        P[i] = i;
    }
    if (W == 2*N) {
        solve_subtask4(N, W, P);
    } else {
        int n = N;
        reset(n);
        for (int i = 0; i< n; i++) {
            play[i] = 1;
        }
        playRound(play, res);
        vector<int> lower1, lower2, lower;
        vector<int> higher1, higher2, higher;
        for(int i = 0; i< n; i++) {
            if (res[i] == 0) {
                lower.push_back(i);
            } else {
                higher.push_back(i);
            }
        }

        reset(n);
        for(int x : higher) {
            play[x] = 2;
        }
        playRound(play, res);
        for (int x : higher) {
            if (res[x] > 0) {
                higher2.push_back(x);
            } else {
                higher1.push_back(x);
            }
        }

        for(int x : lower) {
            if (res[x] > 0) {
                lower2.push_back(x);
            } else {
                lower1.push_back(x);
            }
        }

        int cur = 0;
        for (int i = 0; i < (int) lower1.size(); i++) {
            P[cur++] = lower1[i];
        }
        for (int i = 0; i < (int) lower2.size(); i++) {
            P[cur++] = lower2[i];
        }
        for (int i = 0; i < (int) higher1.size(); i++) {
            P[cur++] = higher1[i];
        }
        for (int i = 0; i < (int) higher2.size(); i++) {
            P[cur++] = higher2[i];
        }
        int n1 = lower1.size(), n2 = lower2.size();
        int N1 = higher1.size(), N2 = higher2.size();
        solve(P, 0, n1-1, N, 14);
        solve(P, n1, n1+n2-1, N, 14);
        solve(P, n1+n2, n1+n2+N1-1, N, 14);
        solve(P, n1+n2+N1, N-1, N, 14);
        // solve(P, 0, N-1, N);
        for (int i = 0; i < N; i++) {
            tmp[P[i]] = i;
        }
        for (int i = 0; i < N; i++) {
            P[i] = tmp[i] + 1;
        }
    }
}

Compilation message

koala.cpp: In function 'void allValues(int, int, int*)':
koala.cpp:272:34: warning: unused variable 'N2' [-Wunused-variable]
  272 |         int N1 = higher1.size(), N2 = higher2.size();
      |                                  ^~
koala.cpp: In function 'int greaterValue(int, int)':
koala.cpp:109:1: warning: control reaches end of non-void function [-Wreturn-type]
  109 | }
      | ^
koala.cpp: In function 'bool isLessThan(int, int, int, int)':
koala.cpp:133:1: warning: control reaches end of non-void function [-Wreturn-type]
  133 | }
      | ^
# Verdict Execution time Memory Grader output
1 Correct 4 ms 208 KB Output is correct
2 Correct 3 ms 208 KB Output is correct
3 Correct 3 ms 208 KB Output is correct
4 Correct 3 ms 208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 208 KB Output is correct
2 Correct 11 ms 208 KB Output is correct
3 Correct 11 ms 324 KB Output is correct
4 Correct 11 ms 208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 35 ms 332 KB Output is correct
2 Correct 43 ms 320 KB Output is correct
3 Correct 36 ms 352 KB Output is correct
4 Correct 37 ms 324 KB Output is correct
5 Correct 39 ms 344 KB Output is correct
6 Correct 35 ms 336 KB Output is correct
7 Correct 35 ms 320 KB Output is correct
8 Correct 35 ms 324 KB Output is correct
9 Correct 36 ms 320 KB Output is correct
10 Correct 45 ms 324 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 38 ms 208 KB Output is correct
2 Correct 33 ms 320 KB Output is correct
3 Correct 32 ms 328 KB Output is correct
4 Correct 32 ms 308 KB Output is correct
5 Correct 32 ms 208 KB Output is correct
6 Correct 32 ms 208 KB Output is correct
7 Correct 31 ms 324 KB Output is correct
8 Correct 32 ms 208 KB Output is correct
9 Correct 32 ms 208 KB Output is correct
10 Correct 39 ms 304 KB Output is correct
11 Correct 32 ms 300 KB Output is correct
12 Correct 30 ms 320 KB Output is correct
13 Correct 38 ms 300 KB Output is correct
14 Correct 31 ms 208 KB Output is correct
15 Correct 31 ms 328 KB Output is correct
16 Correct 31 ms 208 KB Output is correct
17 Correct 31 ms 328 KB Output is correct
18 Correct 31 ms 208 KB Output is correct
19 Correct 31 ms 208 KB Output is correct
20 Correct 31 ms 332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 9 ms 208 KB Output is partially correct
2 Partially correct 12 ms 208 KB Output is partially correct
3 Partially correct 12 ms 208 KB Output is partially correct
4 Partially correct 11 ms 208 KB Output is partially correct
5 Partially correct 11 ms 320 KB Output is partially correct
6 Partially correct 11 ms 208 KB Output is partially correct
7 Partially correct 11 ms 208 KB Output is partially correct
8 Partially correct 11 ms 320 KB Output is partially correct
9 Partially correct 11 ms 208 KB Output is partially correct
10 Partially correct 11 ms 316 KB Output is partially correct
11 Partially correct 11 ms 208 KB Output is partially correct
12 Partially correct 7 ms 208 KB Output is partially correct
13 Partially correct 11 ms 208 KB Output is partially correct
14 Partially correct 11 ms 316 KB Output is partially correct
15 Partially correct 13 ms 320 KB Output is partially correct
16 Partially correct 11 ms 208 KB Output is partially correct
17 Partially correct 11 ms 312 KB Output is partially correct
18 Partially correct 11 ms 208 KB Output is partially correct
19 Partially correct 11 ms 208 KB Output is partially correct
20 Partially correct 11 ms 208 KB Output is partially correct
21 Partially correct 11 ms 316 KB Output is partially correct
22 Partially correct 11 ms 308 KB Output is partially correct
23 Partially correct 10 ms 208 KB Output is partially correct
24 Partially correct 11 ms 316 KB Output is partially correct
25 Partially correct 11 ms 208 KB Output is partially correct
26 Partially correct 11 ms 316 KB Output is partially correct
27 Partially correct 11 ms 208 KB Output is partially correct
28 Partially correct 11 ms 208 KB Output is partially correct
29 Partially correct 11 ms 312 KB Output is partially correct
30 Partially correct 11 ms 316 KB Output is partially correct
31 Partially correct 11 ms 208 KB Output is partially correct
32 Partially correct 11 ms 316 KB Output is partially correct
33 Partially correct 16 ms 208 KB Output is partially correct
34 Partially correct 9 ms 316 KB Output is partially correct
35 Partially correct 11 ms 208 KB Output is partially correct
36 Partially correct 11 ms 320 KB Output is partially correct
37 Partially correct 10 ms 208 KB Output is partially correct
38 Partially correct 10 ms 312 KB Output is partially correct
39 Partially correct 10 ms 208 KB Output is partially correct
40 Partially correct 10 ms 320 KB Output is partially correct