Submission #828679

# Submission time Handle Problem Language Result Execution time Memory
828679 2023-08-17T13:29:31 Z GrindMachine Amusement Park (JOI17_amusement_park) C++17
83 / 100
17 ms 3672 KB
// Om Namah Shivaya

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a, b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a, b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "Joi.h"

void Joi(int n, int m, int A[], int B[], long long X, int T) {
    vector<int> adj[n];

    rep(i,m){
        int u = A[i], v = B[i];
        adj[u].pb(v), adj[v].pb(u);
    }

    vector<int> cnt(n);
    vector<pii> group(n,{-1,-1});

    queue<pii> q;
    q.push({0,0});
    group[0] = {0,0};
    cnt[0]++;

    int ptr = 1;

    while(!q.empty()){
        auto [u,c] = q.front();
        q.pop();

        trav(v,adj[u]){
            if(group[v].ff != -1) conts;
            int id = c;
            if(cnt[c] == 60){
                id = ptr++;
            }

            q.push({v,id});
            group[v] = {id,cnt[id]++};
        }
    }

    rep(i,n){
        int bit = group[i].ss;
        int b = 0;
        if(X & (1ll<<bit)) b = 1;
        MessageBoard(i,b);
    }
}
// Om Namah Shivaya

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a, b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a, b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 1e4 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "Ioi.h"

vector<int> adj2[60];
vector<bool> vis(60);
vector<int> actual_nodes(60);
vector<int> depth(60), deepest(60);
ll x_val = 0;

void dfs1(int u){
    vis[u] = 1;
    deepest[u] = depth[u];

    trav(v,adj2[u]){
        if(vis[v]) conts;
        depth[v] = depth[u]+1;
        dfs1(v);
        amax(deepest[u],deepest[v]);
    }
}

void dfs2(int u, int ret){
    vis[u] = 1;

    pii best = {-1,-1};
    trav(v,adj2[u]){
        if(vis[v]) conts;
        pii px = {deepest[v],v};
        amax(best,px);
    }

    trav(v,adj2[u]){
        if(vis[v]) conts;
        if(!ret and v == best.ss) conts;

        int b = Move(actual_nodes[v]);
        int bit = v;
        if(b) x_val |= (1ll<<bit);

        dfs2(v,1);

        Move(actual_nodes[u]);
    }

    if(!ret and best.ss != -1){
        int v = best.ss;

        int b = Move(actual_nodes[v]);
        int bit = v;
        if(b) x_val |= (1ll<<bit);

        dfs2(v,0);
    }
}

long long Ioi(int n, int m, int A[], int B[], int P, int V, int T) {
    vector<int> adj[n];

    rep(i,m){
        int u = A[i], v = B[i];
        adj[u].pb(v), adj[v].pb(u);
    }

    vector<int> cnt(n);
    vector<pii> group(n,{-1,-1});

    queue<pii> q;
    q.push({0,0});
    group[0] = {0,0};
    cnt[0]++;

    int ptr = 1;

    while(!q.empty()){
        auto [u,c] = q.front();
        q.pop();

        trav(v,adj[u]){
            if(group[v].ff != -1) conts;
            int id = c;
            if(cnt[c] == 60){
                id = ptr++;
            }

            q.push({v,id});
            group[v] = {id,cnt[id]++};
        }
    }

    rep(i,n){
        assert(cnt[i] <= 60);
    }

    // find closest good group
    queue<int> q2;
    vector<int> par(n,-1);
    q2.push(P);
    par[P] = P;

    int want = -1;

    while(!q2.empty()){
        int u = q2.front();
        q2.pop();
        int c = group[u].ff;
        if(cnt[c] == 60){
            want = u;
            break;
        }

        trav(v,adj[u]){
            if(par[v] == -1){
                q2.push(v);
                par[v] = u;
            }
        }
    }

    assert(want != -1);

    int root = group[want].ss;
    int root_val = V;

    vector<int> path;
    int o_want = want;

    while(want != P){
        path.pb(want);
        want = par[want];
    }

    reverse(all(path));

    trav(u,path){
        root_val = Move(u);
        P = u;
    }

    want = o_want;
    assert(P == want);

    int want_col = group[want].ff;

    rep(u,n){
        if(group[u].ff == want_col){
            actual_nodes[group[u].ss] = u;
        }
    }

    rep(u,n){
        trav(v,adj[u]){
            if(group[u].ff == want_col and group[v].ff == want_col){
                int x = group[u].ss;
                int y = group[v].ss;
                adj2[x].pb(y);
                adj2[y].pb(x);
            }
        }
    }

    if(root_val) x_val |= (1ll<<root);

    dfs1(root);
    fill(all(vis),0);
    dfs2(root,0);

    return x_val;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 520 KB Output is correct
2 Correct 1 ms 652 KB Output is correct
3 Correct 0 ms 780 KB Output is correct
4 Correct 0 ms 512 KB Output is correct
5 Correct 0 ms 508 KB Output is correct
6 Correct 2 ms 512 KB Output is correct
7 Correct 1 ms 772 KB Output is correct
8 Correct 0 ms 772 KB Output is correct
9 Correct 1 ms 780 KB Output is correct
10 Correct 0 ms 640 KB Output is correct
11 Correct 3 ms 952 KB Output is correct
12 Correct 0 ms 512 KB Output is correct
13 Correct 0 ms 780 KB Output is correct
14 Correct 0 ms 644 KB Output is correct
15 Correct 1 ms 780 KB Output is correct
16 Correct 2 ms 772 KB Output is correct
17 Correct 1 ms 772 KB Output is correct
18 Correct 1 ms 772 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 3608 KB Output is correct
2 Correct 16 ms 3664 KB Output is correct
3 Correct 17 ms 3644 KB Output is correct
4 Correct 10 ms 2888 KB Output is correct
5 Correct 9 ms 2756 KB Output is correct
6 Correct 10 ms 2892 KB Output is correct
7 Correct 10 ms 2832 KB Output is correct
8 Correct 9 ms 2756 KB Output is correct
9 Correct 9 ms 2728 KB Output is correct
10 Correct 9 ms 2884 KB Output is correct
11 Correct 9 ms 2892 KB Output is correct
12 Correct 10 ms 2612 KB Output is correct
13 Correct 9 ms 2592 KB Output is correct
14 Correct 9 ms 2604 KB Output is correct
15 Correct 10 ms 2756 KB Output is correct
16 Correct 9 ms 2768 KB Output is correct
17 Correct 9 ms 2760 KB Output is correct
18 Correct 10 ms 2760 KB Output is correct
19 Correct 10 ms 2888 KB Output is correct
20 Correct 8 ms 2620 KB Output is correct
21 Correct 8 ms 2628 KB Output is correct
22 Correct 9 ms 2764 KB Output is correct
23 Correct 9 ms 2776 KB Output is correct
24 Correct 10 ms 2756 KB Output is correct
25 Correct 9 ms 2732 KB Output is correct
26 Correct 10 ms 2764 KB Output is correct
27 Correct 9 ms 2636 KB Output is correct
28 Correct 9 ms 2756 KB Output is correct
29 Correct 10 ms 2608 KB Output is correct
30 Correct 9 ms 2620 KB Output is correct
31 Correct 0 ms 512 KB Output is correct
32 Correct 0 ms 640 KB Output is correct
33 Correct 1 ms 772 KB Output is correct
34 Correct 0 ms 520 KB Output is correct
35 Correct 1 ms 524 KB Output is correct
36 Correct 0 ms 512 KB Output is correct
37 Correct 0 ms 512 KB Output is correct
38 Correct 0 ms 520 KB Output is correct
39 Correct 0 ms 520 KB Output is correct
40 Correct 0 ms 512 KB Output is correct
41 Correct 0 ms 520 KB Output is correct
42 Correct 0 ms 508 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 512 KB Output is correct
2 Correct 0 ms 524 KB Output is correct
3 Correct 0 ms 512 KB Output is correct
4 Correct 2 ms 1060 KB Output is correct
5 Correct 2 ms 1056 KB Output is correct
6 Correct 2 ms 1052 KB Output is correct
7 Correct 2 ms 1052 KB Output is correct
8 Correct 2 ms 1052 KB Output is correct
9 Correct 8 ms 2636 KB Output is correct
10 Correct 8 ms 2628 KB Output is correct
11 Correct 7 ms 2636 KB Output is correct
12 Correct 0 ms 520 KB Output is correct
13 Correct 0 ms 512 KB Output is correct
14 Correct 0 ms 512 KB Output is correct
15 Correct 0 ms 512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 3672 KB Output is correct
2 Correct 17 ms 3516 KB Output is correct
3 Correct 16 ms 3648 KB Output is correct
4 Correct 10 ms 2896 KB Output is correct
5 Correct 9 ms 2688 KB Output is correct
6 Correct 9 ms 2756 KB Output is correct
7 Correct 10 ms 2768 KB Output is correct
8 Correct 9 ms 2768 KB Output is correct
9 Correct 11 ms 2756 KB Output is correct
10 Correct 9 ms 2884 KB Output is correct
11 Correct 9 ms 3012 KB Output is correct
12 Correct 9 ms 2612 KB Output is correct
13 Correct 9 ms 2620 KB Output is correct
14 Correct 9 ms 2628 KB Output is correct
15 Correct 9 ms 2696 KB Output is correct
16 Correct 9 ms 2764 KB Output is correct
17 Correct 10 ms 2888 KB Output is correct
18 Correct 9 ms 2884 KB Output is correct
19 Correct 10 ms 2892 KB Output is correct
20 Correct 8 ms 2764 KB Output is correct
21 Correct 7 ms 2632 KB Output is correct
22 Correct 9 ms 2756 KB Output is correct
23 Correct 9 ms 2752 KB Output is correct
24 Correct 9 ms 2764 KB Output is correct
25 Correct 9 ms 2752 KB Output is correct
26 Correct 10 ms 2756 KB Output is correct
27 Correct 9 ms 2764 KB Output is correct
28 Correct 10 ms 2764 KB Output is correct
29 Correct 9 ms 2612 KB Output is correct
30 Correct 9 ms 2628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 3624 KB Output is correct
2 Correct 16 ms 3604 KB Output is correct
3 Correct 17 ms 3616 KB Output is correct
4 Correct 9 ms 2884 KB Output is correct
5 Correct 11 ms 2884 KB Output is correct
6 Correct 9 ms 2756 KB Output is correct
7 Correct 9 ms 2768 KB Output is correct
8 Correct 9 ms 2700 KB Output is correct
9 Correct 9 ms 2768 KB Output is correct
10 Correct 9 ms 2892 KB Output is correct
11 Correct 9 ms 2900 KB Output is correct
12 Correct 9 ms 2620 KB Output is correct
13 Correct 9 ms 2596 KB Output is correct
14 Correct 9 ms 2624 KB Output is correct
15 Correct 9 ms 2744 KB Output is correct
16 Correct 9 ms 2760 KB Output is correct
17 Correct 9 ms 2844 KB Output is correct
18 Incorrect 9 ms 2892 KB Output isn't correct
19 Halted 0 ms 0 KB -