Submission #828657

# Submission time Handle Problem Language Result Execution time Memory
828657 2023-08-17T13:16:43 Z GrindMachine Amusement Park (JOI17_amusement_park) C++17
81 / 100
19 ms 3672 KB
// Om Namah Shivaya

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a, b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a, b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "Joi.h"

void Joi(int n, int m, int A[], int B[], long long X, int T) {
    vector<int> adj[n];

    rep(i,m){
        int u = A[i], v = B[i];
        adj[u].pb(v), adj[v].pb(u);
    }

    vector<int> cnt(n);
    vector<pii> group(n,{-1,-1});

    queue<pii> q;
    q.push({0,0});
    group[0] = {0,0};
    cnt[0]++;

    int ptr = 1;

    while(!q.empty()){
        auto [u,c] = q.front();
        q.pop();

        trav(v,adj[u]){
            if(group[v].ff != -1) conts;
            int id = c;
            if(cnt[c] == 60){
                id = ptr++;
            }

            q.push({v,id});
            group[v] = {id,cnt[id]++};
        }
    }

    rep(i,n){
        int bit = group[i].ss;
        int b = 0;
        if(X & (1ll<<bit)) b = 1;
        MessageBoard(i,b);
    }
}
// Om Namah Shivaya

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a, b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a, b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 1e4 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "Ioi.h"

vector<int> adj2[60];
vector<bool> vis(60);
vector<int> actual_nodes(60);
vector<int> depth(60), deepest(60);
set<pii> st;
ll x_val = 0;

void dfs1(int u){
    vis[u] = 1;
    deepest[u] = depth[u];

    trav(v,adj2[u]){
        if(vis[v]) conts;
        st.insert({u,v});
        st.insert({v,u});
        depth[v] = depth[u]+1;
        dfs1(v);
        amax(deepest[u],deepest[v]);
    }
}

void dfs2(int u){
    vis[u] = 1;

    pii best = {-1,-1};
    trav(v,adj2[u]){
        if(vis[v]) conts;
        if(!st.count({u,v})) conts;
        pii px = {deepest[v],v};
        amax(best,px);
    }

    trav(v,adj2[u]){
        if(vis[v]) conts;
        // if(v == best.ss) conts;
        if(!st.count({u,v})) conts;

        int b = Move(actual_nodes[v]);
        int bit = v;
        if(b) x_val |= (1ll<<bit);

        dfs2(v);

        Move(actual_nodes[u]);
    }

    // if(best.ss != -1){
    //     int v = best.ss;
    //     int b = Move(actual_nodes[v]);
    //     int bit = v;
    //     if(b) x_val |= (1ll<<bit);

    //     dfs2(v);

    //     Move(actual_nodes[u]);
    // }
}

long long Ioi(int n, int m, int A[], int B[], int P, int V, int T) {
    vector<int> adj[n];

    rep(i,m){
        int u = A[i], v = B[i];
        adj[u].pb(v), adj[v].pb(u);
    }

    vector<int> cnt(n);
    vector<pii> group(n,{-1,-1});

    queue<pii> q;
    q.push({0,0});
    group[0] = {0,0};
    cnt[0]++;

    int ptr = 1;

    while(!q.empty()){
        auto [u,c] = q.front();
        q.pop();

        trav(v,adj[u]){
            if(group[v].ff != -1) conts;
            int id = c;
            if(cnt[c] == 60){
                id = ptr++;
            }

            q.push({v,id});
            group[v] = {id,cnt[id]++};
        }
    }

    rep(i,n){
        assert(cnt[i] <= 60);
    }

    // find closest good group
    queue<int> q2;
    vector<int> par(n,-1);
    q2.push(P);
    par[P] = P;

    int want = -1;

    while(!q2.empty()){
        int u = q2.front();
        q2.pop();
        int c = group[u].ff;
        if(cnt[c] == 60){
            want = u;
            break;
        }

        trav(v,adj[u]){
            if(par[v] == -1){
                q2.push(v);
                par[v] = u;
            }
        }
    }

    assert(want != -1);

    int root = group[want].ss;
    int root_val = V;

    vector<int> path;
    int o_want = want;

    while(want != P){
        path.pb(want);
        want = par[want];
    }

    reverse(all(path));

    trav(u,path){
        root_val = Move(u);
        P = u;
    }

    want = o_want;
    assert(P == want);

    int want_col = group[want].ff;

    rep(u,n){
        if(group[u].ff == want_col){
            actual_nodes[group[u].ss] = u;
        }
    }

    rep(u,n){
        trav(v,adj[u]){
            if(group[u].ff == want_col and group[v].ff == want_col){
                int x = group[u].ss;
                int y = group[v].ss;
                adj2[x].pb(y);
                adj2[y].pb(x);
            }
        }
    }

    if(root_val) x_val |= (1ll<<root);

    dfs1(root);
    fill(all(vis),0);
    dfs2(root);

    return x_val;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 516 KB Output is correct
2 Correct 0 ms 644 KB Output is correct
3 Correct 1 ms 772 KB Output is correct
4 Correct 0 ms 648 KB Output is correct
5 Correct 0 ms 652 KB Output is correct
6 Correct 0 ms 640 KB Output is correct
7 Correct 2 ms 780 KB Output is correct
8 Correct 1 ms 780 KB Output is correct
9 Correct 1 ms 652 KB Output is correct
10 Correct 1 ms 640 KB Output is correct
11 Correct 3 ms 1080 KB Output is correct
12 Correct 0 ms 512 KB Output is correct
13 Correct 2 ms 772 KB Output is correct
14 Correct 0 ms 772 KB Output is correct
15 Correct 2 ms 732 KB Output is correct
16 Correct 0 ms 772 KB Output is correct
17 Correct 1 ms 780 KB Output is correct
18 Correct 0 ms 772 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 19 ms 3612 KB Output is correct
2 Correct 16 ms 3660 KB Output is correct
3 Correct 16 ms 3668 KB Output is correct
4 Correct 9 ms 2760 KB Output is correct
5 Correct 10 ms 2884 KB Output is correct
6 Correct 13 ms 2760 KB Output is correct
7 Correct 13 ms 2752 KB Output is correct
8 Correct 12 ms 2644 KB Output is correct
9 Correct 9 ms 2764 KB Output is correct
10 Correct 9 ms 2996 KB Output is correct
11 Correct 14 ms 2892 KB Output is correct
12 Correct 9 ms 2612 KB Output is correct
13 Correct 12 ms 2552 KB Output is correct
14 Correct 9 ms 2612 KB Output is correct
15 Correct 10 ms 2740 KB Output is correct
16 Correct 12 ms 2756 KB Output is correct
17 Correct 11 ms 2884 KB Output is correct
18 Correct 12 ms 2716 KB Output is correct
19 Correct 12 ms 2704 KB Output is correct
20 Correct 9 ms 2768 KB Output is correct
21 Correct 9 ms 2676 KB Output is correct
22 Correct 9 ms 2776 KB Output is correct
23 Correct 9 ms 2624 KB Output is correct
24 Correct 11 ms 2756 KB Output is correct
25 Correct 10 ms 2756 KB Output is correct
26 Correct 11 ms 2756 KB Output is correct
27 Correct 11 ms 2644 KB Output is correct
28 Correct 11 ms 2752 KB Output is correct
29 Correct 10 ms 2604 KB Output is correct
30 Correct 9 ms 2612 KB Output is correct
31 Correct 1 ms 640 KB Output is correct
32 Correct 1 ms 640 KB Output is correct
33 Correct 0 ms 772 KB Output is correct
34 Correct 0 ms 640 KB Output is correct
35 Correct 0 ms 640 KB Output is correct
36 Correct 0 ms 640 KB Output is correct
37 Correct 1 ms 512 KB Output is correct
38 Correct 0 ms 512 KB Output is correct
39 Correct 1 ms 640 KB Output is correct
40 Correct 2 ms 580 KB Output is correct
41 Correct 1 ms 640 KB Output is correct
42 Correct 1 ms 636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 512 KB Output is correct
2 Correct 0 ms 512 KB Output is correct
3 Correct 0 ms 640 KB Output is correct
4 Correct 2 ms 1060 KB Output is correct
5 Correct 2 ms 1052 KB Output is correct
6 Correct 2 ms 1060 KB Output is correct
7 Correct 2 ms 1052 KB Output is correct
8 Correct 2 ms 1052 KB Output is correct
9 Correct 11 ms 2740 KB Output is correct
10 Correct 8 ms 2716 KB Output is correct
11 Correct 11 ms 2684 KB Output is correct
12 Correct 1 ms 520 KB Output is correct
13 Correct 0 ms 640 KB Output is correct
14 Correct 2 ms 512 KB Output is correct
15 Correct 2 ms 508 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 3644 KB Output is correct
2 Correct 17 ms 3628 KB Output is correct
3 Correct 16 ms 3660 KB Output is correct
4 Correct 9 ms 2888 KB Output is correct
5 Partially correct 10 ms 2756 KB Partially correct
6 Correct 9 ms 2764 KB Output is correct
7 Correct 9 ms 2752 KB Output is correct
8 Correct 11 ms 2756 KB Output is correct
9 Correct 13 ms 2828 KB Output is correct
10 Correct 10 ms 2892 KB Output is correct
11 Correct 10 ms 2928 KB Output is correct
12 Correct 11 ms 2608 KB Output is correct
13 Partially correct 9 ms 2620 KB Partially correct
14 Partially correct 9 ms 2628 KB Partially correct
15 Partially correct 9 ms 2848 KB Partially correct
16 Correct 10 ms 2892 KB Output is correct
17 Correct 11 ms 2824 KB Output is correct
18 Partially correct 10 ms 2884 KB Partially correct
19 Correct 9 ms 2888 KB Output is correct
20 Correct 8 ms 2756 KB Output is correct
21 Correct 8 ms 2640 KB Output is correct
22 Correct 10 ms 2756 KB Output is correct
23 Correct 9 ms 2764 KB Output is correct
24 Correct 10 ms 2704 KB Output is correct
25 Correct 10 ms 2756 KB Output is correct
26 Correct 9 ms 2768 KB Output is correct
27 Correct 9 ms 2752 KB Output is correct
28 Correct 9 ms 2756 KB Output is correct
29 Correct 9 ms 2624 KB Output is correct
30 Correct 10 ms 2624 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 18 ms 3488 KB Output is correct
2 Correct 16 ms 3672 KB Output is correct
3 Correct 17 ms 3528 KB Output is correct
4 Correct 10 ms 2760 KB Output is correct
5 Incorrect 11 ms 2788 KB Output isn't correct
6 Halted 0 ms 0 KB -