Submission #828617

# Submission time Handle Problem Language Result Execution time Memory
828617 2023-08-17T12:49:05 Z GrindMachine Amusement Park (JOI17_amusement_park) C++17
81 / 100
20 ms 4080 KB
// Om Namah Shivaya

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a, b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a, b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "Joi.h"

void Joi(int n, int m, int A[], int B[], long long X, int T) {
    vector<int> adj[n];

    rep(i,m){
        int u = A[i], v = B[i];
        adj[u].pb(v), adj[v].pb(u);
    }

    vector<int> cnt(n);
    vector<pii> group(n,{-1,-1});

    queue<pii> q;
    q.push({0,0});
    group[0] = {0,0};
    cnt[0]++;

    int ptr = 1;

    while(!q.empty()){
        auto [u,c] = q.front();
        q.pop();

        trav(v,adj[u]){
            if(group[v].ff != -1) conts;
            int id = c;
            if(cnt[c] == 60){
                id = ptr++;
            }

            q.push({v,id});
            group[v] = {id,cnt[id]++};
        }
    }

    rep(i,n){
        int bit = group[i].ss;
        int b = 0;
        if(X & (1ll<<bit)) b = 1;
        MessageBoard(i,b);
    }
}
// Om Namah Shivaya

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a, b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a, b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 1e4 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "Ioi.h"

vector<int> adj2[60];
vector<bool> vis(60);
vector<int> actual_nodes(60);
ll x_val = 0;
int vis_cnt = 0;

void dfs(int u){
    vis[u] = 1;
    vis_cnt++;

    trav(v,adj2[u]){
        if(vis[v]) conts;
        
        int b = Move(actual_nodes[v]);
        int bit = v;
        if(b) x_val |= (1ll<<bit);

        dfs(v);

        Move(actual_nodes[u]);
    }
}

long long Ioi(int n, int m, int A[], int B[], int P, int V, int T) {
    vector<int> adj[n];

    rep(i,m){
        int u = A[i], v = B[i];
        adj[u].pb(v), adj[v].pb(u);
    }

    vector<int> cnt(n);
    vector<pii> group(n,{-1,-1});

    queue<pii> q;
    q.push({0,0});
    group[0] = {0,0};
    cnt[0]++;

    int ptr = 1;

    while(!q.empty()){
        auto [u,c] = q.front();
        q.pop();

        trav(v,adj[u]){
            if(group[v].ff != -1) conts;
            int id = c;
            if(cnt[c] == 60){
                id = ptr++;
            }

            q.push({v,id});
            group[v] = {id,cnt[id]++};
        }
    }

    rep(i,n){
        assert(cnt[i] <= 60);
    }

    // find closest good group
    queue<int> q2;
    vector<int> par(n,-1);
    q2.push(P);
    par[P] = P;

    int want = -1;

    while(!q2.empty()){
        int u = q2.front();
        q2.pop();
        int c = group[u].ff;
        if(cnt[c] == 60){
            want = u;
            break;
        }

        trav(v,adj[u]){
            if(par[v] == -1){
                q2.push(v);
                par[v] = u;
            }
        }
    }

    assert(want != -1);

    int root = group[want].ss;
    int root_val = V;

    vector<int> path;
    int o_want = want;

    while(want != P){
        path.pb(want);
        want = par[want];
    }

    reverse(all(path));

    trav(u,path){
        root_val = Move(u);
        P = u;
    }

    want = o_want;
    assert(P == want);

    int want_col = group[want].ff;

    rep(u,n){
        if(group[u].ff == want_col){
            actual_nodes[group[u].ss] = u;
        }
    }

    rep(u,n){
        trav(v,adj[u]){
            if(group[u].ff == want_col and group[v].ff == want_col){
                int x = group[u].ss;
                int y = group[v].ss;
                adj2[x].pb(y);
                adj2[y].pb(x);
            }
        }
    }

    if(root_val) x_val |= (1ll<<root);
    dfs(root);

    assert(vis_cnt == 60);

    return x_val;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 524 KB Output is correct
2 Correct 1 ms 512 KB Output is correct
3 Correct 1 ms 776 KB Output is correct
4 Correct 0 ms 524 KB Output is correct
5 Correct 2 ms 512 KB Output is correct
6 Correct 1 ms 516 KB Output is correct
7 Correct 1 ms 768 KB Output is correct
8 Correct 1 ms 776 KB Output is correct
9 Correct 1 ms 784 KB Output is correct
10 Correct 1 ms 516 KB Output is correct
11 Correct 3 ms 968 KB Output is correct
12 Correct 0 ms 636 KB Output is correct
13 Correct 1 ms 776 KB Output is correct
14 Correct 1 ms 776 KB Output is correct
15 Correct 1 ms 776 KB Output is correct
16 Correct 1 ms 776 KB Output is correct
17 Correct 1 ms 776 KB Output is correct
18 Correct 1 ms 776 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 3488 KB Output is correct
2 Correct 17 ms 3984 KB Output is correct
3 Correct 17 ms 4020 KB Output is correct
4 Correct 11 ms 2864 KB Output is correct
5 Correct 12 ms 2860 KB Output is correct
6 Correct 10 ms 2808 KB Output is correct
7 Correct 11 ms 2856 KB Output is correct
8 Correct 9 ms 2864 KB Output is correct
9 Correct 9 ms 2860 KB Output is correct
10 Correct 9 ms 3100 KB Output is correct
11 Correct 9 ms 3128 KB Output is correct
12 Correct 9 ms 2828 KB Output is correct
13 Correct 9 ms 2852 KB Output is correct
14 Correct 9 ms 2848 KB Output is correct
15 Correct 9 ms 2868 KB Output is correct
16 Correct 10 ms 2868 KB Output is correct
17 Correct 9 ms 2984 KB Output is correct
18 Correct 11 ms 2868 KB Output is correct
19 Correct 11 ms 2860 KB Output is correct
20 Correct 8 ms 2868 KB Output is correct
21 Correct 8 ms 2824 KB Output is correct
22 Correct 9 ms 2856 KB Output is correct
23 Correct 9 ms 2856 KB Output is correct
24 Correct 10 ms 2856 KB Output is correct
25 Correct 10 ms 2856 KB Output is correct
26 Correct 10 ms 2856 KB Output is correct
27 Correct 10 ms 2836 KB Output is correct
28 Correct 10 ms 2856 KB Output is correct
29 Correct 9 ms 2784 KB Output is correct
30 Correct 9 ms 2840 KB Output is correct
31 Correct 1 ms 620 KB Output is correct
32 Correct 1 ms 652 KB Output is correct
33 Correct 1 ms 796 KB Output is correct
34 Correct 0 ms 524 KB Output is correct
35 Correct 1 ms 512 KB Output is correct
36 Correct 1 ms 516 KB Output is correct
37 Correct 0 ms 524 KB Output is correct
38 Correct 1 ms 524 KB Output is correct
39 Correct 0 ms 516 KB Output is correct
40 Correct 0 ms 620 KB Output is correct
41 Correct 0 ms 524 KB Output is correct
42 Correct 0 ms 512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 512 KB Output is correct
2 Correct 0 ms 520 KB Output is correct
3 Correct 0 ms 512 KB Output is correct
4 Correct 2 ms 924 KB Output is correct
5 Correct 2 ms 1060 KB Output is correct
6 Correct 2 ms 1068 KB Output is correct
7 Correct 2 ms 952 KB Output is correct
8 Correct 2 ms 1040 KB Output is correct
9 Correct 8 ms 2880 KB Output is correct
10 Correct 8 ms 2848 KB Output is correct
11 Correct 8 ms 2860 KB Output is correct
12 Correct 0 ms 516 KB Output is correct
13 Correct 0 ms 512 KB Output is correct
14 Correct 0 ms 616 KB Output is correct
15 Correct 0 ms 512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 20 ms 3600 KB Output is correct
2 Correct 17 ms 4080 KB Output is correct
3 Correct 17 ms 4052 KB Output is correct
4 Correct 10 ms 3124 KB Output is correct
5 Partially correct 11 ms 2848 KB Partially correct
6 Correct 9 ms 2844 KB Output is correct
7 Correct 9 ms 2888 KB Output is correct
8 Correct 10 ms 2856 KB Output is correct
9 Correct 11 ms 2840 KB Output is correct
10 Correct 9 ms 3128 KB Output is correct
11 Correct 9 ms 3116 KB Output is correct
12 Correct 10 ms 2832 KB Output is correct
13 Partially correct 9 ms 2896 KB Partially correct
14 Partially correct 9 ms 2896 KB Partially correct
15 Partially correct 9 ms 2856 KB Partially correct
16 Correct 10 ms 2904 KB Output is correct
17 Correct 10 ms 2988 KB Output is correct
18 Partially correct 11 ms 2988 KB Partially correct
19 Correct 9 ms 2984 KB Output is correct
20 Correct 11 ms 2840 KB Output is correct
21 Correct 9 ms 2996 KB Output is correct
22 Correct 10 ms 2840 KB Output is correct
23 Correct 11 ms 2876 KB Output is correct
24 Correct 10 ms 2876 KB Output is correct
25 Correct 9 ms 2876 KB Output is correct
26 Correct 11 ms 2884 KB Output is correct
27 Correct 11 ms 2856 KB Output is correct
28 Correct 10 ms 2836 KB Output is correct
29 Correct 9 ms 2780 KB Output is correct
30 Correct 9 ms 2824 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 3664 KB Output is correct
2 Correct 17 ms 3988 KB Output is correct
3 Correct 17 ms 4044 KB Output is correct
4 Correct 11 ms 2864 KB Output is correct
5 Incorrect 10 ms 2860 KB Output isn't correct
6 Halted 0 ms 0 KB -