Submission #826292

# Submission time Handle Problem Language Result Execution time Memory
826292 2023-08-15T12:22:42 Z NK_ Building Bridges (CEOI17_building) C++17
100 / 100
41 ms 8128 KB
// Success consists of going from failure to failure without loss of enthusiasm
#include <bits/stdc++.h>

using namespace std;

#define nl '\n'
#define pb push_back 
#define mp make_pair
#define f first
#define s second
#define sz(x) int(x.size())

template<class T> using V = vector<T>;
using vi = V<int>;
using ll = long long;
using pl = pair<ll, ll>;
using vl = V<ll>;
// using vpi = V<pi>;

const ll INFL = ll(1e18) + 1008;
const int nax = int(1e6);


struct line {
	ll m, b; 
	line() { m = 0, b = INFL; }
	line(ll m, ll b) : m(m), b(b) { }
	ll get(ll x) { return m * x + b; }
};

struct LiChao {
	struct node {
		node *l, *r;
		line x;
		node(line x) : x(x) { l = r = 0; }
	};

	node *t = new node(line());

	void upd(line x, node *&v, int l = 0, int r = nax) {
		if (!v) { v = new node(x); return; }
		// cout << l << " <-> " << r << endl;
		int m = (l + r) / 2;
		bool lf = x.get(l) < v->x.get(l);
		bool md = x.get(m) < v->x.get(m);
		if (md) swap(x, v->x);
		if (l == r) return;
		if (lf != md) upd(x, v->l, l, m);
		else upd(x, v->r, m+1, r);
	}

	ll get(int x, node *&v, int l = 0, int r = nax) {
		if (!v) return INFL;
		// cout << l << " < - > " << r << endl;
		int m = (l + r) / 2;
		if (l == r) return v->x.get(x);
		if (x < m) return min(v->x.get(x), get(x, v->l, l, m));
		else return min(v->x.get(x), get(x, v->r, m+1, r));
	}

	void upd(line x) { return upd(x, t); }
	ll get(int x) { return get(x, t); }
};

int main() {
	cin.tie(0)->sync_with_stdio(0);

	int N; cin >> N;
	vi A(N); for(auto& x : A) cin >> x;
	vi W(N); for(auto& x : W) cin >> x;

	if (A.front() > A.back()) {
		reverse(begin(A), end(A));
		reverse(begin(W), end(W));
	}

	vl P = {0}; for(auto& x : W) P.pb(P.back() + x);

	auto sq = [&](int x) { return x * 1LL * x; };

	vl dp(N, INFL); dp[0] = 0;
	LiChao T; T.upd(line(-2 * A[0], dp[0] + sq(A[0]) - P[1]));

	for(int i = 1; i < N; i++) {
		dp[i] = T.get(A[i]) + sq(A[i]) + P[i];
		T.upd(line(-2 * A[i], dp[i] + sq(A[i]) - P[i + 1]));
	}

	cout << dp.back() << nl;
    return 0;
}			

# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 1 ms 324 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 36 ms 4132 KB Output is correct
2 Correct 35 ms 4164 KB Output is correct
3 Correct 36 ms 4100 KB Output is correct
4 Correct 32 ms 3656 KB Output is correct
5 Correct 28 ms 7212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 1 ms 324 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 36 ms 4132 KB Output is correct
7 Correct 35 ms 4164 KB Output is correct
8 Correct 36 ms 4100 KB Output is correct
9 Correct 32 ms 3656 KB Output is correct
10 Correct 28 ms 7212 KB Output is correct
11 Correct 36 ms 4608 KB Output is correct
12 Correct 37 ms 4876 KB Output is correct
13 Correct 28 ms 3904 KB Output is correct
14 Correct 41 ms 4924 KB Output is correct
15 Correct 28 ms 8128 KB Output is correct
16 Correct 28 ms 7220 KB Output is correct
17 Correct 18 ms 3780 KB Output is correct
18 Correct 19 ms 3784 KB Output is correct