#include <bits/stdc++.h>
using namespace std;
template <class S, S (*op)(S, S), S (*e)(),
class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = lazy_segtree<S, op, e, F, mapping, composition, id>::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) update(i);
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size, r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1, r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size, r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1, r >>= 1;
}
l = l2, r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) sm = op(sm, d[l++]);
}
return l - size;
}
sm = op(sm, d[l++]);
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) sm = op(d[r--], sm);
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
static int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
using S1 = int64_t;
struct F1 {};
S1 op1(S1 x, S1 y) { return x + y; }
S1 e1() { return 0LL; }
S1 mapping1(F1 f, S1 x) { (void)f; return x; }
F1 composition1(F1 f, F1 g) { (void)g; return f; }
F1 id1() { return F1{}; }
const int BASE_LENGTH = 60;
typedef array<int, BASE_LENGTH> int_baseK;
int K;
int64_t to_ll(const int_baseK &x) {
int64_t res = 0;
for (int i = BASE_LENGTH - 1; i >= 0; i--)
res = res * K + x[i];
return res;
}
int_baseK to_baseK(int64_t x) {
int i = 0;
int_baseK res{};
while (x) res[i++] = x % K, x /= K;
return res;
}
using S2 = int_baseK;
struct F2 { int c; };
S2 op2(S2 x, S2 y) {
S2 res{};
for (int i = 0; i < BASE_LENGTH; i++) res[i] = x[i] + y[i];
return res;
}
S2 e2() { return int_baseK{}; }
S2 mapping2(F2 f, S2 x) {
S2 res{};
for (int i = 0; i + f.c < BASE_LENGTH; i++) res[i] = x[i + f.c];
return res;
}
F2 composition2(F2 f, F2 g) { return F2{f.c + g.c}; }
F2 id2() { return F2{0}; }
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int n, q; cin >> n >> q >> K;
if (K == 1) {
vector<S1> c(n); for (auto &i : c) cin >> i;
lazy_segtree<S1, op1, e1, F1, mapping1, composition1, id1> segtree(c);
while (q--) {
int s, t, u; cin >> s >> t >> u; --t;
if (s == 1) segtree.set(t, u);
if (s == 3) cout << segtree.prod(t, u) << '\n';
}
return 0;
}
vector<S2> c(n);
for (auto &it : c) {
int64_t x; cin >> x;
it = to_baseK(x);
}
lazy_segtree<S2, op2, e2, F2, mapping2, composition2, id2> segtree(c);
while (q--) {
int s, t, u; cin >> s >> t >> u; --t;
if (s == 1) segtree.set(t, to_baseK(u));
if (s == 2) segtree.apply(t, u, F2{1});
if (s == 3) cout << to_ll(segtree.prod(t, u)) << '\n';
}
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
5 ms |
340 KB |
Output is correct |
2 |
Correct |
1 ms |
340 KB |
Output is correct |
3 |
Correct |
2 ms |
1620 KB |
Output is correct |
4 |
Correct |
8 ms |
1620 KB |
Output is correct |
5 |
Correct |
9 ms |
2900 KB |
Output is correct |
6 |
Correct |
9 ms |
2988 KB |
Output is correct |
7 |
Correct |
9 ms |
2980 KB |
Output is correct |
8 |
Correct |
9 ms |
2984 KB |
Output is correct |
9 |
Correct |
9 ms |
2900 KB |
Output is correct |
10 |
Correct |
9 ms |
2992 KB |
Output is correct |
11 |
Correct |
9 ms |
2980 KB |
Output is correct |
12 |
Correct |
9 ms |
2900 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
30 ms |
2160 KB |
Output is correct |
2 |
Correct |
26 ms |
1936 KB |
Output is correct |
3 |
Correct |
23 ms |
3264 KB |
Output is correct |
4 |
Correct |
28 ms |
3540 KB |
Output is correct |
5 |
Correct |
32 ms |
3636 KB |
Output is correct |
6 |
Correct |
33 ms |
3544 KB |
Output is correct |
7 |
Correct |
34 ms |
3620 KB |
Output is correct |
8 |
Correct |
33 ms |
3552 KB |
Output is correct |
9 |
Correct |
31 ms |
3624 KB |
Output is correct |
10 |
Correct |
32 ms |
3644 KB |
Output is correct |
11 |
Correct |
32 ms |
3672 KB |
Output is correct |
12 |
Correct |
31 ms |
3564 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
106 ms |
5732 KB |
Output is correct |
2 |
Correct |
75 ms |
41868 KB |
Output is correct |
3 |
Correct |
105 ms |
41812 KB |
Output is correct |
4 |
Correct |
320 ms |
21668 KB |
Output is correct |
5 |
Correct |
447 ms |
85892 KB |
Output is correct |
6 |
Correct |
437 ms |
85936 KB |
Output is correct |
7 |
Correct |
28 ms |
3248 KB |
Output is correct |
8 |
Correct |
471 ms |
85944 KB |
Output is correct |
9 |
Correct |
417 ms |
85896 KB |
Output is correct |
10 |
Correct |
409 ms |
85872 KB |
Output is correct |
11 |
Correct |
418 ms |
86052 KB |
Output is correct |
12 |
Correct |
424 ms |
86020 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
272 ms |
43576 KB |
Output is correct |
2 |
Correct |
325 ms |
43888 KB |
Output is correct |
3 |
Correct |
219 ms |
42040 KB |
Output is correct |
4 |
Correct |
313 ms |
23632 KB |
Output is correct |
5 |
Correct |
474 ms |
86132 KB |
Output is correct |
6 |
Correct |
456 ms |
86168 KB |
Output is correct |
7 |
Correct |
476 ms |
86148 KB |
Output is correct |
8 |
Correct |
492 ms |
86136 KB |
Output is correct |
9 |
Correct |
422 ms |
86192 KB |
Output is correct |
10 |
Correct |
426 ms |
86092 KB |
Output is correct |
11 |
Correct |
478 ms |
86080 KB |
Output is correct |
12 |
Correct |
461 ms |
86152 KB |
Output is correct |