Submission #824744

# Submission time Handle Problem Language Result Execution time Memory
824744 2023-08-14T09:21:26 Z Koyote Fortune Telling 2 (JOI14_fortune_telling2) C++14
100 / 100
375 ms 115332 KB
#include <bits/stdc++.h>
using namespace std;

#define all(x) x.begin(), x.end()
#define sz(x) (int)x.size()

template<class T> struct merge_sort_tree {
    int _l, _r, _m;
    vector<T> v;
    merge_sort_tree *left, *right;
    merge_sort_tree(int l, int r, vector<T> &e) {
        v.resize(r - l + 1);
        _l = l, _r = r, _m = (l + r) >> 1, v[0] = e[l];
        if (l == r) left = right = nullptr;
        else {
            left = new merge_sort_tree(_l, _m, e);
            right = new merge_sort_tree(_m + 1, _r, e);
            vector<T> v1 = left->v, v2 = right->v;
            v.clear();
            int s1 = sz(v1), s2 = sz(v2);
            v.reserve(s1 + s2);
            int i = 0, j = 0;
            while (i < s1 && j < s2) {
                if (v1[i] <= v2[j]) v.push_back(v1[i]), i++;
                else v.push_back(v2[j]), j++;
            }
            while (i < s1) v.push_back(v1[i]), i++;
            while (j < s2) v.push_back(v2[j]), j++;
        }
    }
    int count(int l, int r, T a, T b) {
        if (a > b) return 0;
        if (l > _r || r < _l) return 0;
        if (_l >= l && _r <= r) return upper_bound(all(v), b) - lower_bound(all(v), a);
        return left->count(l, r, a, b) + right->count(l, r, a, b);
    }
};

const int N = 2e5 + 7, N2 = 6e5 + 2, LG = 22;
int n, k, a[N], b[N], t[N], ti[N2];
int spt_max_ti[N2][LG];

int lg2(int x) { return x ? 31 - __builtin_clz(x) : -1; }

int main() {
    cin.tie(nullptr)->sync_with_stdio(false);
    cin >> n >> k;
    for (int i = 0; i < n; i++) cin >> a[i] >> b[i];
    for (int i = 0; i < k; i++) cin >> t[i];

    vector<int> compr; compr.reserve(2 * n + k);
    for (int i = 0; i < n; i++) compr.push_back(a[i]), compr.push_back(b[i]);
    for (int i = 0; i < k; i++) compr.push_back(t[i]);
    sort(compr.begin(), compr.end());
    compr.erase(unique(compr.begin(), compr.end()), compr.end());
    for (int i = 0; i < n; i++) {
        a[i] = lower_bound(compr.begin(), compr.end(), a[i]) - compr.begin();
        b[i] = lower_bound(compr.begin(), compr.end(), b[i]) - compr.begin();
    }
    for (int i = 0; i < k; i++)
        t[i] = lower_bound(compr.begin(), compr.end(), t[i]) - compr.begin();

    int max_ti = compr.size();
    for (int i = 0; i <= max_ti; i++) ti[i] = -1;
    for (int i = 0; i < k; i++) ti[t[i]] = i;
    for (int i = 0; i <= max_ti; i++)
        spt_max_ti[i][0] = ti[i];
    for (int j = 1; j < LG; j++)
        for (int i = 0; i + (1 << j) - 1 <= max_ti; i++)
            spt_max_ti[i][j] = max(spt_max_ti[i][j - 1], spt_max_ti[i + (1 << (j - 1))][j - 1]);
    
    auto query_max_ti = [&](int l, int r) {
        int len = lg2(r - l + 1);
        return max(spt_max_ti[l][len], spt_max_ti[r - (1 << len) + 1][len]);
    };

    vector<int> t_vector(k);
    for (int i = 0; i < k; i++) t_vector[i] = t[i];
    auto cnt_in_range_ab = merge_sort_tree<int>(0, k - 1, t_vector);

    long long ans = 0;
    for (int i = 0; i < n; i++) {
        if (a[i] == b[i]) { ans += compr[a[i]]; continue; }
        bool swapped = (a[i] > b[i]);
        if (a[i] > b[i]) swap(a[i], b[i]);
        auto last_pos = query_max_ti(a[i], b[i] - 1);
        int cnt_flipped = cnt_in_range_ab.count(last_pos + 1, k - 1, b[i], int(1e9));

        if (last_pos != -1 || swapped) swap(a[i], b[i]);
        if (cnt_flipped % 2 == 0) ans += compr[a[i]];
        else ans += compr[b[i]];
    }
    cout << ans << '\n';
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 596 KB Output is correct
2 Correct 1 ms 724 KB Output is correct
3 Correct 1 ms 852 KB Output is correct
4 Correct 1 ms 852 KB Output is correct
5 Correct 1 ms 852 KB Output is correct
6 Correct 1 ms 852 KB Output is correct
7 Correct 2 ms 852 KB Output is correct
8 Correct 2 ms 852 KB Output is correct
9 Correct 1 ms 852 KB Output is correct
10 Correct 2 ms 596 KB Output is correct
11 Correct 1 ms 724 KB Output is correct
12 Correct 1 ms 724 KB Output is correct
13 Correct 2 ms 724 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 596 KB Output is correct
2 Correct 1 ms 724 KB Output is correct
3 Correct 1 ms 852 KB Output is correct
4 Correct 1 ms 852 KB Output is correct
5 Correct 1 ms 852 KB Output is correct
6 Correct 1 ms 852 KB Output is correct
7 Correct 2 ms 852 KB Output is correct
8 Correct 2 ms 852 KB Output is correct
9 Correct 1 ms 852 KB Output is correct
10 Correct 2 ms 596 KB Output is correct
11 Correct 1 ms 724 KB Output is correct
12 Correct 1 ms 724 KB Output is correct
13 Correct 2 ms 724 KB Output is correct
14 Correct 12 ms 5596 KB Output is correct
15 Correct 32 ms 10996 KB Output is correct
16 Correct 41 ms 16332 KB Output is correct
17 Correct 54 ms 21776 KB Output is correct
18 Correct 53 ms 21780 KB Output is correct
19 Correct 57 ms 21708 KB Output is correct
20 Correct 58 ms 21724 KB Output is correct
21 Correct 49 ms 21784 KB Output is correct
22 Correct 39 ms 18188 KB Output is correct
23 Correct 48 ms 16308 KB Output is correct
24 Correct 38 ms 14972 KB Output is correct
25 Correct 40 ms 19252 KB Output is correct
26 Correct 44 ms 17448 KB Output is correct
27 Correct 54 ms 18180 KB Output is correct
28 Correct 45 ms 18100 KB Output is correct
29 Correct 62 ms 19980 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 596 KB Output is correct
2 Correct 1 ms 724 KB Output is correct
3 Correct 1 ms 852 KB Output is correct
4 Correct 1 ms 852 KB Output is correct
5 Correct 1 ms 852 KB Output is correct
6 Correct 1 ms 852 KB Output is correct
7 Correct 2 ms 852 KB Output is correct
8 Correct 2 ms 852 KB Output is correct
9 Correct 1 ms 852 KB Output is correct
10 Correct 2 ms 596 KB Output is correct
11 Correct 1 ms 724 KB Output is correct
12 Correct 1 ms 724 KB Output is correct
13 Correct 2 ms 724 KB Output is correct
14 Correct 12 ms 5596 KB Output is correct
15 Correct 32 ms 10996 KB Output is correct
16 Correct 41 ms 16332 KB Output is correct
17 Correct 54 ms 21776 KB Output is correct
18 Correct 53 ms 21780 KB Output is correct
19 Correct 57 ms 21708 KB Output is correct
20 Correct 58 ms 21724 KB Output is correct
21 Correct 49 ms 21784 KB Output is correct
22 Correct 39 ms 18188 KB Output is correct
23 Correct 48 ms 16308 KB Output is correct
24 Correct 38 ms 14972 KB Output is correct
25 Correct 40 ms 19252 KB Output is correct
26 Correct 44 ms 17448 KB Output is correct
27 Correct 54 ms 18180 KB Output is correct
28 Correct 45 ms 18100 KB Output is correct
29 Correct 62 ms 19980 KB Output is correct
30 Correct 150 ms 72332 KB Output is correct
31 Correct 185 ms 83012 KB Output is correct
32 Correct 233 ms 93756 KB Output is correct
33 Correct 352 ms 115276 KB Output is correct
34 Correct 147 ms 72432 KB Output is correct
35 Correct 358 ms 115308 KB Output is correct
36 Correct 353 ms 115316 KB Output is correct
37 Correct 375 ms 115332 KB Output is correct
38 Correct 358 ms 115312 KB Output is correct
39 Correct 363 ms 115328 KB Output is correct
40 Correct 332 ms 114948 KB Output is correct
41 Correct 368 ms 115228 KB Output is correct
42 Correct 369 ms 115252 KB Output is correct
43 Correct 259 ms 114708 KB Output is correct
44 Correct 257 ms 114616 KB Output is correct
45 Correct 253 ms 114536 KB Output is correct
46 Correct 225 ms 86380 KB Output is correct
47 Correct 227 ms 77316 KB Output is correct
48 Correct 298 ms 97316 KB Output is correct
49 Correct 275 ms 97320 KB Output is correct