Submission #815654

# Submission time Handle Problem Language Result Execution time Memory
815654 2023-08-08T17:45:39 Z t6twotwo Distributing Candies (IOI21_candies) C++17
67 / 100
836 ms 27884 KB
#include "candies.h"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
constexpr ll inf = 1e18;
vector<ll> mn, mn2, mx, mx2, lazy;
void apply_add(int p, ll v) {
    lazy[p] += v;
    mn[p] += v;
    mx[p] += v;
    if (mn2[p] != inf) {
        mn2[p] += v;
    }
    if (mx2[p] != -inf) {
        mx2[p] += v;
    }
}
void apply_upd(int p, ll cmn, ll cmx) {
    if (cmn == cmx) {
        mn[p] = mx[p] = cmn;
        mn2[p] = inf;
        mx2[p] = -inf;
    } else {
        if (cmn < mx[p]) {
            if (mn[p] == mx[p]) {
                mn[p] = cmn;
            }
            if (mn2[p] == mx[p]) {
                mn2[p] = cmn;
            }
            mx[p] = cmn;
        }
        if (cmx > mn[p]) {
            if (mx[p] == mn[p]) {
                mx[p] = cmx;
            }
            if (mx2[p] == mn[p]) {
                mx2[p] = cmx;
            }
            mn[p] = cmx;
        }
    }
}
void push_add(int p) {
    apply_add(p * 2, lazy[p]);
    apply_add(p * 2 + 1, lazy[p]);
    lazy[p] = 0;
}
void push_upd(int p) {
    apply_upd(p * 2, mx[p], mn[p]);
    apply_upd(p * 2 + 1, mx[p], mn[p]);
}
void pull(int p) {
    int l = p * 2;
    int r = p * 2 + 1;
    mx[p] = max(mx[l], mx[r]);
    mn[p] = min(mn[l], mn[r]);
    mx2[p] = max(mx[p] == mx[l] ? mx2[l] : mx[l], mx[p] == mx[r] ? mx2[r] : mx[r]);
    mn2[p] = min(mn[p] == mn[l] ? mn2[l] : mn[l], mn[p] == mn[r] ? mn2[r] : mn[r]);
}
void add(int p, int l, int r, int L, int R, int v) {
    if (R <= l || r <= L) {
        return;
    }
    if (L <= l && r <= R) {
        apply_add(p, v);
        return;
    }
    int m = (l + r + 1) / 2;
    push_add(p);
    push_upd(p);
    add(p * 2, l, m, L, R, v);
    add(p * 2 + 1, m, r, L, R, v);
    pull(p);
}
void upd(int p, int l, int r, int L, int R, ll v, bool f) {
    if (R <= l || r <= L || (!f && v >= mx[p]) || (f && v <= mn[p])) {
        return;
    }
    if (L <= l && r <= R && (mn[p] == mx[p] || (!f && v > mx2[p]) || (f && v < mn2[p]))) {
        if (f) {
            apply_upd(p, inf, v);
        } else {
            apply_upd(p, v, -inf);
        }
        return;
    }
    int m = (l + r + 1) / 2;
    push_add(p);
    push_upd(p);
    upd(p * 2, l, m, L, R, v, f);
    upd(p * 2 + 1, m, r, L, R, v, f);
    pull(p);
}
vector<int> distribute_candies(vector<int> C, vector<int> L, vector<int> R, vector<int> V) {
    for (int &x : R) {
        x++;
    }
    int N = C.size(), Q = V.size();
    if (N <= 2000 && Q <= 2000) {
        vector<int> A(N);
        for (int i = 0; i < Q; i++) {
            for (int j = L[i]; j < R[i]; j++) {
                A[j] += V[i];
                A[j] = max(A[j], 0);
                A[j] = min(A[j], C[j]);
            }
        }
        return A;
    }
    if (*min_element(V.begin(), V.end()) > 0) {
        vector<ll> s(N + 1);
        for (int i = 0; i < Q; i++) {
            s[L[i]] += V[i];
            s[R[i]] -= V[i];
        }
        vector<int> A(N);
        for (int i = 0; i < N; i++) {
            A[i] = min((ll)C[i], s[i]);
            s[i + 1] += s[i];
        }
        return A;
    }
    int M = 2 << __lg(N - 1);
    if (L == vector(Q, 0) && R == vector(Q, N)) {
        vector<int> ord(N);
        iota(ord.begin(), ord.end(), 0);
        sort(ord.begin(), ord.end(), [&](int i, int j) {
            return C[i] < C[j];
        });
        vector<int> st(2 * M), df(2 * M), lz(2 * M, -1);
        vector<ll> sum(2 * M);
        auto pull = [&](int i) {
            st[i] = max(st[i * 2], st[i * 2 + 1]);
            df[i] = max(df[i * 2], df[i * 2 + 1]);
        };
        auto apply = [&](int p, int l, int r, int v, ll s) {
            if (v == 0) {
                st[p] = 0;
                df[p] = C[ord[min(r, N) - 1]];
            } else if (v == 1) {
                st[p] = C[ord[min(r, N) - 1]];
                df[p] = 0;
            }
            st[p] += s;
            df[p] -= s;
            if (v != -1) {
                lz[p] = v;
                sum[p] = s;
            } else {
                sum[p] += s;
            }
        };
        auto push = [&](int p, int l, int r) {
            int m = (l + r + 1) / 2;
            apply(p * 2, l, m, lz[p], sum[p]);
            apply(p * 2 + 1, m, r, lz[p], sum[p]);
            lz[p] = -1;
            sum[p] = 0;
        };
        auto upd = [&](auto upd, int p, int l, int r, int L, int R, int f, int v) -> void {
            if (R <= l || r <= L) {
                return;
            }
            if (L <= l && r <= R) {
                if (f == 0) {
                    apply(p, l, r, 0, 0);
                } else if (f == 1) {
                    apply(p, l, r, 1, 0);
                } else {
                    apply(p, l, r, -1, v);
                }
                return;
            }
            int m = (l + r + 1) / 2;
            push(p, l, r);
            upd(upd, p * 2, l, m, L, R, f, v);
            upd(upd, p * 2 + 1, m, r, L, R, f, v);
            pull(p);
        };
        auto find = [&](auto find, int p, int l, int r, int v, vector<int> &s) -> int {
            if (l + 1 == r) {
                return l;
            }
            int m = (l + r + 1) / 2;
            push(p, l, r);
            if (s[p * 2] >= v) {
                return find(find, p * 2, l, m, v, s);
            } else {
                return find(find, p * 2 + 1, m, r, v, s);
            }
        };
        for (int i = 0; i < N; i++) {
            df[i + M] = C[ord[i]];
        }
        for (int i = M - 1; i; i--) {
            pull(i);
        }
        for (int i = 0; i < Q; i++) {
            if (V[i] < 0) {
                int f = st[1] < -V[i] ? N : find(find, 1, 0, M, -V[i], st);
                upd(upd, 1, 0, M, 0, f, 0, 0);
                upd(upd, 1, 0, M, f, N, 2, V[i]);
            } else {
                int f = df[1] < V[i] ? N : find(find, 1, 0, M, V[i], df);
                upd(upd, 1, 0, M, 0, f, 1, 0);
                upd(upd, 1, 0, M, f, N, 2, V[i]);
            }
        }
        vector<int> ans(N);
        auto qry = [&](auto qry, int p, int l, int r) -> void {
            if (l + 1 == r) {
                if (l < N) {
                    ans[ord[l]] = st[p];
                }
                return;
            }
            int m = (l + r + 1) / 2;
            push(p, l, r);
            qry(qry, p * 2, l, m);
            qry(qry, p * 2 + 1, m, r);
        };
        qry(qry, 1, 0, M);
        return ans;
    }
    mn.resize(2 * M, 0);
    mx.resize(2 * M, 0);
    mn2.resize(2 * M, inf);
    mx2.resize(2 * M, -inf);
    lazy.resize(2 * M);
    for (int i = 0; i < Q; i++) {
        add(1, 0, M, L[i], R[i], V[i]);
        if (V[i] > 0) {
            upd(1, 0, M, L[i], R[i], C[0], 0);
        } else {
            upd(1, 0, M, L[i], R[i], 0, 1);
        }
    }
    for (int i = 1; i < M; i++) {
        push_add(i);
        push_upd(i);
    }
    vector<int> ans(N);
    for (int i = 0; i < N; i++) {
        ans[i] = mx[i + M];
    }
    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 3 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 85 ms 8804 KB Output is correct
2 Correct 76 ms 8820 KB Output is correct
3 Correct 76 ms 8804 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 168 ms 5744 KB Output is correct
3 Correct 56 ms 24272 KB Output is correct
4 Correct 437 ms 27864 KB Output is correct
5 Correct 505 ms 27828 KB Output is correct
6 Correct 750 ms 27880 KB Output is correct
7 Correct 836 ms 27884 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 185 ms 6488 KB Output is correct
4 Correct 69 ms 14928 KB Output is correct
5 Correct 415 ms 21904 KB Output is correct
6 Correct 432 ms 22572 KB Output is correct
7 Correct 398 ms 23156 KB Output is correct
8 Correct 411 ms 21800 KB Output is correct
9 Correct 81 ms 13744 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 3 ms 340 KB Output is correct
6 Correct 85 ms 8804 KB Output is correct
7 Correct 76 ms 8820 KB Output is correct
8 Correct 76 ms 8804 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 168 ms 5744 KB Output is correct
11 Correct 56 ms 24272 KB Output is correct
12 Correct 437 ms 27864 KB Output is correct
13 Correct 505 ms 27828 KB Output is correct
14 Correct 750 ms 27880 KB Output is correct
15 Correct 836 ms 27884 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 185 ms 6488 KB Output is correct
19 Correct 69 ms 14928 KB Output is correct
20 Correct 415 ms 21904 KB Output is correct
21 Correct 432 ms 22572 KB Output is correct
22 Correct 398 ms 23156 KB Output is correct
23 Correct 411 ms 21800 KB Output is correct
24 Correct 81 ms 13744 KB Output is correct
25 Correct 1 ms 212 KB Output is correct
26 Incorrect 54 ms 24620 KB Output isn't correct
27 Halted 0 ms 0 KB -