Submission #815634

# Submission time Handle Problem Language Result Execution time Memory
815634 2023-08-08T17:37:33 Z t6twotwo Distributing Candies (IOI21_candies) C++17
38 / 100
825 ms 27888 KB
#include "candies.h"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
constexpr ll inf = 1e18;
vector<ll> mn, mn2, mx, mx2, lazy;
void apply_add(int p, ll v) {
    lazy[p] += v;
    mn[p] += v;
    mx[p] += v;
    if (mn2[p] != inf) {
        mn2[p] += v;
    }
    if (mx2[p] != -inf) {
        mx2[p] += v;
    }
}
void apply_upd(int p, ll cmn, ll cmx) {
    if (cmn == cmx) {
        mn[p] = mx[p] = cmn;
        mn2[p] = inf;
        mx2[p] = -inf;
    } else {
        if (cmn < mx[p]) {
            if (mn[p] == mx[p]) {
                mn[p] = cmn;
            }
            if (mn2[p] == mx[p]) {
                mn2[p] = cmn;
            }
            mx[p] = cmn;
        }
        if (cmx > mn[p]) {
            if (mx[p] == mn[p]) {
                mx[p] = cmx;
            }
            if (mx2[p] == mn[p]) {
                mx2[p] = cmx;
            }
            mn[p] = cmx;
        }
    }
}
void push_add(int p) {
    apply_add(p * 2, lazy[p]);
    apply_add(p * 2 + 1, lazy[p]);
    lazy[p] = 0;
}
void push_upd(int p) {
    apply_upd(p * 2, mx[p], mn[p]);
    apply_upd(p * 2 + 1, mx[p], mn[p]);
}
void pull(int p) {
    int l = p * 2;
    int r = p * 2 + 1;
    mx[p] = max(mx[l], mx[r]);
    mn[p] = min(mn[l], mn[r]);
    mx2[p] = max(mx[p] == mx[l] ? mx2[l] : mx[l], mx[p] == mx[r] ? mx2[r] : mx[r]);
    mn2[p] = min(mn[p] == mn[l] ? mn2[l] : mn[l], mn[p] == mn[r] ? mn2[r] : mn[r]);
}
void add(int p, int l, int r, int L, int R, int v) {
    if (R <= l || r <= L) {
        return;
    }
    if (L <= l && r <= R) {
        apply_add(p, v);
        return;
    }
    int m = (l + r + 1) / 2;
    push_add(p);
    push_upd(p);
    add(p * 2, l, m, L, R, v);
    add(p * 2 + 1, m, r, L, R, v);
    pull(p);
}
void upd(int p, int l, int r, int L, int R, ll v, bool f) {
    if (R <= l || r <= L || (!f && v >= mx[p]) || (f && v <= mn[p])) {
        return;
    }
    if (L <= l && r <= R && (mn[p] == mx[p] || (!f && v > mx2[p]) || (f && v < mn2[p]))) {
        if (f) {
            apply_upd(p, inf, v);
        } else {
            apply_upd(p, v, -inf);
        }
        return;
    }
    int m = (l + r + 1) / 2;
    push_add(p);
    push_upd(p);
    upd(p * 2, l, m, L, R, v, f);
    upd(p * 2 + 1, m, r, L, R, v, f);
    pull(p);
}
vector<int> distribute_candies(vector<int> C, vector<int> L, vector<int> R, vector<int> V) {
    for (int &x : R) {
        x++;
    }
    int N = C.size(), Q = V.size();
    if (N <= 2000 && Q <= 2000) {
        vector<int> A(N);
        for (int i = 0; i < Q; i++) {
            for (int j = L[i]; j < R[i]; j++) {
                A[j] += V[i];
                A[j] = max(A[j], 0);
                A[j] = min(A[j], C[j]);
            }
        }
        return A;
    }
    if (*min_element(V.begin(), V.end()) > 0) {
        vector<ll> s(N + 1);
        for (int i = 0; i < Q; i++) {
            s[L[i]] += V[i];
            s[R[i]] -= V[i];
        }
        vector<int> A(N);
        for (int i = 0; i < N; i++) {
            A[i] = min((ll)C[i], s[i]);
            s[i + 1] += s[i];
        }
        return A;
    }
    int M = 2 << __lg(N - 1);
    if (L == vector(Q, 0) && R == vector(Q, N)) {
        vector<int> ord(N);
        iota(ord.begin(), ord.end(), 0);
        sort(ord.begin(), ord.end(), [&](int i, int j) {
            return C[i] < C[j];
        });
        vector<int> st(2 * M), df(2 * M), lz(2 * M, -1);
        vector<ll> sum(2 * M);
        auto pull = [&](int i) {
            st[i] = max(st[i * 2], st[i * 2 + 1]);
            df[i] = max(df[i * 2], df[i * 2 + 1]);
        };
        auto apply = [&](int p, int l, int r, int v, ll s) {
            if (v == 0) {
                st[p] = 0;
                df[p] = C[ord[min(r, N) - 1]];
            } else if (v == 1) {
                st[p] = C[ord[min(r, N) - 1]];
                df[p] = 0;
            }
            st[p] += s;
            df[p] -= s;
            if (v != -1) {
                lz[p] = v;
                sum[p] = s;
            } else {
                sum[p] += s;
            }
        };
        auto push = [&](int p, int l, int r) {
            int m = (l + r + 1) / 2;
            apply(p * 2, l, m, lz[p], sum[p]);
            apply(p * 2 + 1, m, r, lz[p], sum[p]);
            lz[p] = -1;
            sum[p] = 0;
        };
        auto upd = [&](auto upd, int p, int l, int r, int L, int R, int f, int v) -> void {
            if (R <= l || r <= L) {
                return;
            }
            if (L <= l && r <= R) {
                if (f == 0) {
                    apply(p, l, r, 0, 0);
                } else if (f == 1) {
                    apply(p, l, r, 1, 0);
                } else {
                    apply(p, l, r, -1, v);
                }
                return;
            }
            int m = (l + r + 1) / 2;
            push(p, l, r);
            upd(upd, p * 2, l, m, L, R, f, v);
            upd(upd, p * 2 + 1, m, r, L, R, f, v);
            pull(p);
        };
        auto find = [&](auto find, int p, int l, int r, int v, vector<int> &s) -> int {
            if (l + 1 == r) {
                return l;
            }
            int m = (l + r + 1) / 2;
            if (p * 2 + 1 >= s.size()) {
                while (1) {
                }
            }
            if (s[p * 2] >= v) {
                return find(find, p * 2, l, m, v, s);
            } else {
                if (s[p * 2 + 1] < v) {
                    // while (1) {
                    // }
                }
                return find(find, p * 2 + 1, m, r, v, s);
            }
        };
        for (int i = 0; i < N; i++) {
            df[i + M] = C[ord[i]];
        }
        for (int i = M - 1; i; i--) {
            pull(i);
        }
        for (int i = 0; i < Q; i++) {
            if (V[i] < 0) {
                int f = st[1] < -V[i] ? N : find(find, 1, 0, M, -V[i], st);
                upd(upd, 1, 0, M, 0, f, 0, 0);
                upd(upd, 1, 0, M, f, N, 2, V[i]);
            } else {
                int f = df[1] < V[i] ? N : find(find, 1, 0, M, V[i], df);
                upd(upd, 1, 0, M, 0, f, 1, 0);
                upd(upd, 1, 0, M, f, N, 2, V[i]);
            }
        }
        vector<int> ans(N);
        auto qry = [&](auto qry, int p, int l, int r) -> void {
            if (l + 1 == r) {
                ans[ord[l]] = st[p];
                return;
            }
            int m = (l + r + 1) / 2;
            push(p, l, r);
            qry(qry, p * 2, l, m);
            qry(qry, p * 2 + 1, m, r);
        };
        qry(qry, 1, 0, M);
        return ans;
    }
    mn.resize(2 * M, 0);
    mx.resize(2 * M, 0);
    mn2.resize(2 * M, inf);
    mx2.resize(2 * M, -inf);
    lazy.resize(2 * M);
    for (int i = 0; i < Q; i++) {
        add(1, 0, M, L[i], R[i], V[i]);
        if (V[i] > 0) {
            upd(1, 0, M, L[i], R[i], C[0], 0);
        } else {
            upd(1, 0, M, L[i], R[i], 0, 1);
        }
    }
    for (int i = 1; i < M; i++) {
        push_add(i);
        push_upd(i);
    }
    vector<int> ans(N);
    for (int i = 0; i < N; i++) {
        ans[i] = mx[i + M];
    }
    return ans;
}

Compilation message

candies.cpp: In instantiation of 'distribute_candies(std::vector<int>, std::vector<int>, std::vector<int>, std::vector<int>)::<lambda(auto:24, int, int, int, int, std::vector<int>&)> [with auto:24 = distribute_candies(std::vector<int>, std::vector<int>, std::vector<int>, std::vector<int>)::<lambda(auto:24, int, int, int, int, std::vector<int>&)>]':
candies.cpp:208:74:   required from here
candies.cpp:186:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  186 |             if (p * 2 + 1 >= s.size()) {
      |                 ~~~~~~~~~~^~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 3 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 78 ms 8804 KB Output is correct
2 Correct 79 ms 8908 KB Output is correct
3 Correct 79 ms 8920 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 160 ms 5724 KB Output is correct
3 Correct 56 ms 24368 KB Output is correct
4 Correct 497 ms 27880 KB Output is correct
5 Correct 601 ms 27884 KB Output is correct
6 Correct 825 ms 27888 KB Output is correct
7 Correct 643 ms 27880 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Runtime error 197 ms 10176 KB Execution killed with signal 11
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 3 ms 340 KB Output is correct
6 Correct 78 ms 8804 KB Output is correct
7 Correct 79 ms 8908 KB Output is correct
8 Correct 79 ms 8920 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 160 ms 5724 KB Output is correct
11 Correct 56 ms 24368 KB Output is correct
12 Correct 497 ms 27880 KB Output is correct
13 Correct 601 ms 27884 KB Output is correct
14 Correct 825 ms 27888 KB Output is correct
15 Correct 643 ms 27880 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Runtime error 197 ms 10176 KB Execution killed with signal 11
19 Halted 0 ms 0 KB -