Submission #815614

# Submission time Handle Problem Language Result Execution time Memory
815614 2023-08-08T17:26:40 Z t6twotwo Distributing Candies (IOI21_candies) C++17
38 / 100
711 ms 27884 KB
#include "candies.h"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
constexpr ll inf = 1e18;
vector<ll> mn, mn2, mx, mx2, lazy;
void apply_add(int p, ll v) {
    lazy[p] += v;
    mn[p] += v;
    mx[p] += v;
    if (mn2[p] != inf) {
        mn2[p] += v;
    }
    if (mx2[p] != -inf) {
        mx2[p] += v;
    }
}
void apply_upd(int p, ll cmn, ll cmx) {
    if (cmn == cmx) {
        mn[p] = mx[p] = cmn;
        mn2[p] = inf;
        mx2[p] = -inf;
    } else {
        if (cmn < mx[p]) {
            if (mn[p] == mx[p]) {
                mn[p] = cmn;
            }
            if (mn2[p] == mx[p]) {
                mn2[p] = cmn;
            }
            mx[p] = cmn;
        }
        if (cmx > mn[p]) {
            if (mx[p] == mn[p]) {
                mx[p] = cmx;
            }
            if (mx2[p] == mn[p]) {
                mx2[p] = cmx;
            }
            mn[p] = cmx;
        }
    }
}
void push_add(int p) {
    apply_add(p * 2, lazy[p]);
    apply_add(p * 2 + 1, lazy[p]);
    lazy[p] = 0;
}
void push_upd(int p) {
    apply_upd(p * 2, mx[p], mn[p]);
    apply_upd(p * 2 + 1, mx[p], mn[p]);
}
void pull(int p) {
    int l = p * 2;
    int r = p * 2 + 1;
    mx[p] = max(mx[l], mx[r]);
    mn[p] = min(mn[l], mn[r]);
    mx2[p] = max(mx[p] == mx[l] ? mx2[l] : mx[l], mx[p] == mx[r] ? mx2[r] : mx[r]);
    mn2[p] = min(mn[p] == mn[l] ? mn2[l] : mn[l], mn[p] == mn[r] ? mn2[r] : mn[r]);
}
void add(int p, int l, int r, int L, int R, int v) {
    if (R <= l || r <= L) {
        return;
    }
    if (L <= l && r <= R) {
        apply_add(p, v);
        return;
    }
    int m = (l + r + 1) / 2;
    push_add(p);
    push_upd(p);
    add(p * 2, l, m, L, R, v);
    add(p * 2 + 1, m, r, L, R, v);
    pull(p);
}
void upd(int p, int l, int r, int L, int R, ll v, bool f) {
    if (R <= l || r <= L || (!f && v >= mx[p]) || (f && v <= mn[p])) {
        return;
    }
    if (L <= l && r <= R && (mn[p] == mx[p] || (!f && v > mx2[p]) || (f && v < mn2[p]))) {
        if (f) {
            apply_upd(p, inf, v);
        } else {
            apply_upd(p, v, -inf);
        }
        return;
    }
    int m = (l + r + 1) / 2;
    push_add(p);
    push_upd(p);
    upd(p * 2, l, m, L, R, v, f);
    upd(p * 2 + 1, m, r, L, R, v, f);
    pull(p);
}
vector<int> distribute_candies(vector<int> C, vector<int> L, vector<int> R, vector<int> V) {
    for (int &x : R) {
        x++;
    }
    int N = C.size(), Q = V.size();
    if (N <= 2000 && Q <= 2000) {
        vector<int> A(N);
        for (int i = 0; i < Q; i++) {
            for (int j = L[i]; j < R[i]; j++) {
                A[j] += V[i];
                A[j] = max(A[j], 0);
                A[j] = min(A[j], C[j]);
            }
        }
        return A;
    }
    if (*min_element(V.begin(), V.end()) > 0) {
        vector<ll> s(N + 1);
        for (int i = 0; i < Q; i++) {
            s[L[i]] += V[i];
            s[R[i]] -= V[i];
        }
        vector<int> A(N);
        for (int i = 0; i < N; i++) {
            A[i] = min((ll)C[i], s[i]);
            s[i + 1] += s[i];
        }
        return A;
    }
    int M = 2 << __lg(N - 1);
    if (L == vector(Q, 0) && R == vector(Q, N)) {
        vector<int> ord(N);
        iota(ord.begin(), ord.end(), 0);
        sort(ord.begin(), ord.end(), [&](int i, int j) {
            return C[i] < C[j];
        });
        vector<int> st(2 * M), df(2 * M), lz(2 * M, -1);
        vector<ll> sum(2 * M);
        auto pull = [&](int i) {
            if (i * 2 + 1 >= 2 * M) {
                while (1) {
                }
            }
            st[i] = max(st[i * 2], st[i * 2 + 1]);
            df[i] = max(df[i * 2], df[i * 2 + 1]);
        };
        auto apply = [&](int p, int l, int r, int v, ll s) {
            if (p >= 2 * M) {
                while (1) {
                }
            }
            if (v == 0) {
                st[p] = 0;
                df[p] = C[ord[min(r, N) - 1]];
            } else if (v == 1) {
                st[p] = C[ord[min(r, N) - 1]];
                df[p] = 0;
            }
            if (min(r, N) - 1 < 0) {
                while (1) {
                }
            }
            if (min(r, N) - 1 >= N) {
                while (1) {
                }
            }
            st[p] += s;
            df[p] -= s;
            if (v != -1) {
                lz[p] = v;
                sum[p] = s;
            } else {
                sum[p] += s;
            }
        };
        auto push = [&](int p, int l, int r) {
            int m = (l + r + 1) / 2;
            if (p >= 2 * M) {
                // while (1) {
                // }
            }
            apply(p * 2, l, m, lz[p], sum[p]);
            apply(p * 2 + 1, m, r, lz[p], sum[p]);
            lz[p] = -1;
            sum[p] = 0;
        };
        auto upd = [&](auto upd, int p, int l, int r, int L, int R, int f, int v) -> void {
            if (R <= l || r <= L) {
                return;
            }
            if (L <= l && r <= R) {
                if (f == 0) {
                    apply(p, l, r, 0, 0);
                } else if (f == 1) {
                    apply(p, l, r, 1, 0);
                } else {
                    apply(p, l, r, -1, v);
                }
                return;
            }
            int m = (l + r + 1) / 2;
            push(p, l, r);
            upd(upd, p * 2, l, m, L, R, f, v);
            upd(upd, p * 2 + 1, m, r, L, R, f, v);
            pull(p);
        };
        auto find = [&](auto find, int p, int l, int r, int v, vector<int> &s) -> int {
            if (l + 1 == r) {
                return l;
            }
            int m = (l + r + 1) / 2;
            if (s[p * 2] >= v) {
                return find(find, p * 2, l, m, v, s);
            } else {
                if (s[p * 2 + 1] < v) {
                    // while (1) {
                    // }
                }
                return find(find, p * 2 + 1, m, r, v, s);
            }
        };
        for (int i = 0; i < N; i++) {
            df[i + M] = C[ord[i]];
            if (i + M >= 2 * M) {
                // while (1) {
                // }
            }
        }
        for (int i = M - 1; i; i--) {
            pull(i);
        }
        for (int i = 0; i < Q; i++) {
            if (V[i] < 0) {
                int f = st[1] < -V[i] ? N : find(find, 1, 0, M, -V[i], st);
                upd(upd, 1, 0, M, 0, f, 0, 0);
                upd(upd, 1, 0, M, f, N, 2, V[i]);
            } else {
                int f = df[1] < V[i] ? N : find(find, 1, 0, M, V[i], df);
                upd(upd, 1, 0, M, 0, f, 1, 0);
                upd(upd, 1, 0, M, f, N, 2, V[i]);
            }
        }
        vector<int> ans(N);
        auto qry = [&](auto qry, int p, int l, int r) -> void {
            if (l + 1 == r) {
                ans[ord[l]] = st[p];
                return;
            }
            int m = (l + r + 1) / 2;
            push(p, l, r);
            qry(qry, p * 2, l, m);
            qry(qry, p * 2 + 1, m, r);
        };
        qry(qry, 1, 0, M);
        return ans;
    }
    mn.resize(2 * M, 0);
    mx.resize(2 * M, 0);
    mn2.resize(2 * M, inf);
    mx2.resize(2 * M, -inf);
    lazy.resize(2 * M);
    for (int i = 0; i < Q; i++) {
        add(1, 0, M, L[i], R[i], V[i]);
        if (V[i] > 0) {
            upd(1, 0, M, L[i], R[i], C[0], 0);
        } else {
            upd(1, 0, M, L[i], R[i], 0, 1);
        }
    }
    for (int i = 1; i < M; i++) {
        push_add(i);
        push_upd(i);
    }
    vector<int> ans(N);
    for (int i = 0; i < N; i++) {
        ans[i] = mx[i + M];
    }
    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 232 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 3 ms 368 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 81 ms 8908 KB Output is correct
2 Correct 78 ms 8936 KB Output is correct
3 Correct 80 ms 8824 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 156 ms 5732 KB Output is correct
3 Correct 56 ms 24380 KB Output is correct
4 Correct 412 ms 27884 KB Output is correct
5 Correct 504 ms 27884 KB Output is correct
6 Correct 711 ms 27876 KB Output is correct
7 Correct 655 ms 27816 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 224 KB Output is correct
3 Runtime error 171 ms 10180 KB Execution killed with signal 11
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 232 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 3 ms 368 KB Output is correct
6 Correct 81 ms 8908 KB Output is correct
7 Correct 78 ms 8936 KB Output is correct
8 Correct 80 ms 8824 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 156 ms 5732 KB Output is correct
11 Correct 56 ms 24380 KB Output is correct
12 Correct 412 ms 27884 KB Output is correct
13 Correct 504 ms 27884 KB Output is correct
14 Correct 711 ms 27876 KB Output is correct
15 Correct 655 ms 27816 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 0 ms 224 KB Output is correct
18 Runtime error 171 ms 10180 KB Execution killed with signal 11
19 Halted 0 ms 0 KB -