Submission #815590

# Submission time Handle Problem Language Result Execution time Memory
815590 2023-08-08T17:12:29 Z t6twotwo Distributing Candies (IOI21_candies) C++17
38 / 100
740 ms 34580 KB
#include "candies.h"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
constexpr ll inf = 1e18;
vector<ll> mn, mn2, mx, mx2, lazy;
void apply_add(int p, ll v) {
    lazy[p] += v;
    mn[p] += v;
    mx[p] += v;
    if (mn2[p] != inf) {
        mn2[p] += v;
    }
    if (mx2[p] != -inf) {
        mx2[p] += v;
    }
}
void apply_upd(int p, ll cmn, ll cmx) {
    if (cmn == cmx) {
        mn[p] = mx[p] = cmn;
        mn2[p] = inf;
        mx2[p] = -inf;
    } else {
        if (cmn < mx[p]) {
            if (mn[p] == mx[p]) {
                mn[p] = cmn;
            }
            if (mn2[p] == mx[p]) {
                mn2[p] = cmn;
            }
            mx[p] = cmn;
        }
        if (cmx > mn[p]) {
            if (mx[p] == mn[p]) {
                mx[p] = cmx;
            }
            if (mx2[p] == mn[p]) {
                mx2[p] = cmx;
            }
            mn[p] = cmx;
        }
    }
}
void push_add(int p) {
    apply_add(p * 2, lazy[p]);
    apply_add(p * 2 + 1, lazy[p]);
    lazy[p] = 0;
}
void push_upd(int p) {
    apply_upd(p * 2, mx[p], mn[p]);
    apply_upd(p * 2 + 1, mx[p], mn[p]);
}
void pull(int p) {
    int l = p * 2;
    int r = p * 2 + 1;
    mx[p] = max(mx[l], mx[r]);
    mn[p] = min(mn[l], mn[r]);
    mx2[p] = max(mx[p] == mx[l] ? mx2[l] : mx[l], mx[p] == mx[r] ? mx2[r] : mx[r]);
    mn2[p] = min(mn[p] == mn[l] ? mn2[l] : mn[l], mn[p] == mn[r] ? mn2[r] : mn[r]);
}
void add(int p, int l, int r, int L, int R, int v) {
    if (R <= l || r <= L) {
        return;
    }
    if (L <= l && r <= R) {
        apply_add(p, v);
        return;
    }
    int m = (l + r + 1) / 2;
    push_add(p);
    push_upd(p);
    add(p * 2, l, m, L, R, v);
    add(p * 2 + 1, m, r, L, R, v);
    pull(p);
}
void upd(int p, int l, int r, int L, int R, ll v, bool f) {
    if (R <= l || r <= L || (!f && v >= mx[p]) || (f && v <= mn[p])) {
        return;
    }
    if (L <= l && r <= R && (mn[p] == mx[p] || (!f && v > mx2[p]) || (f && v < mn2[p]))) {
        if (f) {
            apply_upd(p, inf, v);
        } else {
            apply_upd(p, v, -inf);
        }
        return;
    }
    int m = (l + r + 1) / 2;
    push_add(p);
    push_upd(p);
    upd(p * 2, l, m, L, R, v, f);
    upd(p * 2 + 1, m, r, L, R, v, f);
    pull(p);
}
vector<int> distribute_candies(vector<int> C, vector<int> L, vector<int> R, vector<int> V) {
    for (int &x : R) {
        x++;
    }
    int N = C.size(), Q = V.size();
    if (N <= 2000 && Q <= 2000) {
        vector<int> A(N);
        for (int i = 0; i < Q; i++) {
            for (int j = L[i]; j < R[i]; j++) {
                A[j] += V[i];
                A[j] = max(A[j], 0);
                A[j] = min(A[j], C[j]);
            }
        }
        return A;
    }
    if (*min_element(V.begin(), V.end()) > 0) {
        vector<ll> s(N + 1);
        for (int i = 0; i < Q; i++) {
            s[L[i]] += V[i];
            s[R[i]] -= V[i];
        }
        vector<int> A(N);
        for (int i = 0; i < N; i++) {
            A[i] = min((ll)C[i], s[i]);
            s[i + 1] += s[i];
        }
        return A;
    }
    int M = 2 << __lg(N - 1);
    if (L == vector(Q, 0) && R == vector(Q, N)) {
        vector<int> ord(N);
        iota(ord.begin(), ord.end(), 0);
        sort(ord.begin(), ord.end(), [&](int i, int j) {
            return C[i] < C[j];
        });
        vector<int> st(2 * M), df(2 * M), lz(2 * M, -1);
        vector<ll> sum(2 * M);
        auto pull = [&](int i) {
            st[i] = max(st[i * 2], st[i * 2 + 1]);
            df[i] = max(df[i * 2], df[i * 2 + 1]);
        };
        auto apply = [&](int p, int l, int r, int v, ll s) {
            if (v == 0) {
                st[p] = 0;
                assert(min(r, N) - 1 >= 0);
                df[p] = C[ord[min(r, N) - 1]];
            } else if (v == 1) {
                assert(min(r, N) - 1 >= 0);
                st[p] = C[ord[min(r, N) - 1]];
                df[p] = 0;
            }
            st[p] += s;
            df[p] -= s;
            if (v != -1) {
                lz[p] = v;
                sum[p] = s;
            } else {
                sum[p] += s;
            }
        };
        auto push = [&](int p, int l, int r) {
            int m = (l + r + 1) / 2;
            apply(p * 2, l, m, lz[p], sum[p]);
            apply(p * 2 + 1, m, r, lz[p], sum[p]);
            lz[p] = -1;
            sum[p] = 0;
        };
        auto upd = [&](auto upd, int p, int l, int r, int L, int R, int f, int v) -> void {
            if (R <= l || r <= L) {
                return;
            }
            if (L <= l && r <= R) {
                if (f == 0) {
                    apply(p, l, r, 0, 0);
                } else if (f == 1) {
                    apply(p, l, r, 1, 0);
                } else {
                    apply(p, l, r, -1, v);
                }
                return;
            }
            int m = (l + r + 1) / 2;
            push(p, l, r);
            upd(upd, p * 2, l, m, L, R, f, v);
            upd(upd, p * 2 + 1, m, r, L, R, f, v);
            pull(p);
        };
        auto find = [&](auto find, int p, int l, int r, int v, vector<int> &s) -> int {
            if (l + 1 == r) {
                return l;
            }
            int m = (l + r + 1) / 2;
            if (s[p * 2] >= v) {
                return find(find, p * 2, l, m, v, s);
            } else {
                return find(find, p * 2 + 1, m, r, v, s);
            }
        };
        for (int i = 0; i < N; i++) {
            df[i + M] = C[ord[i]];
        }
        for (int i = M - 1; i; i--) {
            pull(i);
        }
        for (int i = 0; i < Q; i++) {
            if (V[i] < 0) {
                int f = st[1] < -V[i] ? N : find(find, 1, 0, M, -V[i], st);
                upd(upd, 1, 0, M, 0, f, 0, 0);
                upd(upd, 1, 0, M, f, N, 2, V[i]);
            } else {
                int f = df[1] < V[i] ? N : find(find, 1, 0, M, V[i], df);
                upd(upd, 1, 0, M, 0, f, 1, 0);
                upd(upd, 1, 0, M, f, N, 2, V[i]);
            }
        }
        vector<int> ans(N);
        auto qry = [&](auto qry, int p, int l, int r) -> void {
            if (l + 1 == r) {
                ans[ord[l]] = st[p];
                return;
            }
            int m = (l + r + 1) / 2;
            push(p, l, r);
            qry(qry, p * 2, l, m);
            qry(qry, p * 2 + 1, m, r);
        };
        qry(qry, 1, 0, M);
        return ans;
    }
    mn.resize(2 * M, 0);
    mx.resize(2 * M, 0);
    mn2.resize(2 * M, inf);
    mx2.resize(2 * M, -inf);
    lazy.resize(2 * M);
    for (int i = 0; i < Q; i++) {
        add(1, 0, M, L[i], R[i], V[i]);
        if (V[i] > 0) {
            upd(1, 0, M, L[i], R[i], C[0], 0);
        } else {
            upd(1, 0, M, L[i], R[i], 0, 1);
        }
    }
    for (int i = 1; i < M; i++) {
        push_add(i);
        push_upd(i);
    }
    vector<int> ans(N);
    for (int i = 0; i < N; i++) {
        ans[i] = mx[i + M];
    }
    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 300 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 3 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 82 ms 13656 KB Output is correct
2 Correct 85 ms 13000 KB Output is correct
3 Correct 85 ms 12752 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 328 KB Output is correct
2 Correct 164 ms 8752 KB Output is correct
3 Correct 68 ms 26468 KB Output is correct
4 Correct 474 ms 33796 KB Output is correct
5 Correct 540 ms 34188 KB Output is correct
6 Correct 723 ms 34580 KB Output is correct
7 Correct 740 ms 33912 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 300 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Runtime error 159 ms 12724 KB Execution killed with signal 11
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 300 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 3 ms 340 KB Output is correct
6 Correct 82 ms 13656 KB Output is correct
7 Correct 85 ms 13000 KB Output is correct
8 Correct 85 ms 12752 KB Output is correct
9 Correct 1 ms 328 KB Output is correct
10 Correct 164 ms 8752 KB Output is correct
11 Correct 68 ms 26468 KB Output is correct
12 Correct 474 ms 33796 KB Output is correct
13 Correct 540 ms 34188 KB Output is correct
14 Correct 723 ms 34580 KB Output is correct
15 Correct 740 ms 33912 KB Output is correct
16 Correct 1 ms 300 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Runtime error 159 ms 12724 KB Execution killed with signal 11
19 Halted 0 ms 0 KB -