Submission #806928

# Submission time Handle Problem Language Result Execution time Memory
806928 2023-08-04T11:07:54 Z sentheta Distributing Candies (IOI21_candies) C++17
100 / 100
863 ms 28952 KB
#include "candies.h"
#include<bits/stdc++.h>
using namespace std;

#define Int long long
#define V vector
#define pii pair<int,int>
#define ff first
#define ss second

static mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());

#define pow2(x) (1LL<<(x))
#define msb(x) (63-__builtin_clzll(x))
#define bitcnt(x) (__builtin_popcountll(x))

#define nl '\n'
#define _ << ' ' <<
#define all(x) (x).begin(), (x).end()
#define rep(i,a,b) for(int i = (int)(a); i < (int)(b); i++)

#define DBG 0
#define cerr if(DBG) cout
#define dbg(x) {cerr << "?" << #x << " : " << (x) << endl << flush;}

const Int INF = 1e9+5;
const int N = 2e5+5;

int n, q;
V<int> c;
V<int> ql, qr, qv;


#define mid (tl+tr)/2
#define lc (v+1)
#define rc (v+2*(mid-tl+1))
// st.qry(t) = height at time t
// range add update
// range max/min query
struct St{
	Int mx[2*N], mn[2*N], lz[2*N];
	void upd(int l,int r,Int x,int v=0,int tl=0,int tr=q){
		if(r<tl || tr<l) return;
		if(l<=tl && tr<=r){
			mx[v] += x; mn[v] += x; lz[v] += x;
			return;
		}
		upd(l,r,x, lc,tl,mid);
		upd(l,r,x, rc,mid+1,tr);
		mx[v] = lz[v] + max(mx[lc], mx[rc]);
		mn[v] = lz[v] + min(mn[lc], mn[rc]);
	}
	Int qryMax(int l,int r=q,int v=0,int tl=0,int tr=q){
		if(r<tl || tr<l) return -INF*INF;
		if(l<=tl && tr<=r) return mx[v];
		return lz[v] + max({
			qryMax(l,r, lc,tl,mid), qryMax(l,r, rc,mid+1,tr)
		});
	}
	Int qryMin(int l,int r=q,int v=0,int tl=0,int tr=q){
		if(r<tl || tr<l) return INF*INF;
		if(l<=tl && tr<=r) return mn[v];
		return lz[v] + min({
			qryMin(l,r, lc,tl,mid), qryMin(l,r, rc,mid+1,tr)
		});
	}
} st;

// events
V<int> ev[N];

V<int> distribute_candies(V<int> _c,V<int> _ql,V<int> _qr,V<int> _qv){
	c.swap(_c); ql.swap(_ql); qr.swap(_qr); qv.swap(_qv);
	n = c.size();
	
	// dummy updates to guarantee both walls will be touched
	reverse(all(ql)); reverse(all(qr)); reverse(all(qv));
	ql.push_back(0); qr.push_back(n-1); qv.push_back(-INF);
	ql.push_back(0); qr.push_back(n-1); qv.push_back(+INF);
	reverse(all(ql)); reverse(all(qr)); reverse(all(qv));
	
	q = ql.size();
	
	// sort update events by l and r
	dbg(q);
	rep(i,0,q){
		cerr << ql[i] _ qr[i] _ qv[i] << nl;
		ev[ql[i]].push_back(i);
		ev[qr[i]+1].push_back(i);
	}
	cerr << nl;
	
	V<int> vans(n);
	rep(i,0,n){
		for(int e : ev[i]){
			// enable update
			if(ql[e]==i){
				st.upd(e,q, qv[e]);
			}
			// disable update
			else{
				st.upd(e,q, -qv[e]);
			}
			// rep(i,0,q) cerr << st.qryMax(i,i) << " ";
			// cerr << nl << nl;
		}
		
		// rep(i,0,q) cerr << st.qryMax(i,i) << " ";
		// cerr << nl << nl;
		
		// find last wall touch
		// if MAX-MIN>=c[i], in the future, we will touch both wall
		int t = 0;
		for(int J=1<<20; J; J/=2)
			if(t+J<q && st.qryMax(t+J)-st.qryMin(t+J)>=c[i]) t+=J;
		t++;
		
		dbg(t);
		dbg(st.qryMax(t)-st.qryMin(t));
		
		// find height base wall
		Int h = st.qryMax(q), base;
		// if last movement was UP, that means we were just pushing the ceiling up and MAX is ceiling wall
		if(qv[t] > 0){
			base = st.qryMax(t) - c[i];
		}
		// similarly, if last movement was DOWN, that means MIN is floor/base wall
		else{
			base = st.qryMin(t);
		}
		
		// ans is relative height from base
		vans[i] = h - base;
		
		dbg(h);
		dbg(base);
		cerr << nl << nl;
		// if(i==1) return vans;
	}
	
	return vans;
	
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 4 ms 5204 KB Output is correct
4 Correct 3 ms 5204 KB Output is correct
5 Correct 6 ms 5172 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 745 ms 28192 KB Output is correct
2 Correct 853 ms 27932 KB Output is correct
3 Correct 863 ms 27948 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 195 ms 21388 KB Output is correct
3 Correct 212 ms 9576 KB Output is correct
4 Correct 800 ms 28952 KB Output is correct
5 Correct 817 ms 28952 KB Output is correct
6 Correct 678 ms 28580 KB Output is correct
7 Correct 739 ms 27416 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 82 ms 22052 KB Output is correct
4 Correct 190 ms 8460 KB Output is correct
5 Correct 535 ms 24388 KB Output is correct
6 Correct 514 ms 24476 KB Output is correct
7 Correct 350 ms 24772 KB Output is correct
8 Correct 595 ms 24388 KB Output is correct
9 Correct 634 ms 25788 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 4 ms 5204 KB Output is correct
4 Correct 3 ms 5204 KB Output is correct
5 Correct 6 ms 5172 KB Output is correct
6 Correct 745 ms 28192 KB Output is correct
7 Correct 853 ms 27932 KB Output is correct
8 Correct 863 ms 27948 KB Output is correct
9 Correct 3 ms 4948 KB Output is correct
10 Correct 195 ms 21388 KB Output is correct
11 Correct 212 ms 9576 KB Output is correct
12 Correct 800 ms 28952 KB Output is correct
13 Correct 817 ms 28952 KB Output is correct
14 Correct 678 ms 28580 KB Output is correct
15 Correct 739 ms 27416 KB Output is correct
16 Correct 2 ms 4948 KB Output is correct
17 Correct 3 ms 4948 KB Output is correct
18 Correct 82 ms 22052 KB Output is correct
19 Correct 190 ms 8460 KB Output is correct
20 Correct 535 ms 24388 KB Output is correct
21 Correct 514 ms 24476 KB Output is correct
22 Correct 350 ms 24772 KB Output is correct
23 Correct 595 ms 24388 KB Output is correct
24 Correct 634 ms 25788 KB Output is correct
25 Correct 3 ms 4948 KB Output is correct
26 Correct 218 ms 8428 KB Output is correct
27 Correct 185 ms 21412 KB Output is correct
28 Correct 777 ms 27928 KB Output is correct
29 Correct 743 ms 28084 KB Output is correct
30 Correct 685 ms 27808 KB Output is correct
31 Correct 703 ms 27936 KB Output is correct
32 Correct 592 ms 28072 KB Output is correct