이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
#include <bits/stdc++.h>
using namespace std;
constexpr int64_t INF = 2e18;
class SegTree {
int size;
vector<int64_t> arr, lazy;
void update(int n, int nb, int ne) {
if (lazy[n]) {
arr[n] += lazy[n];
if (nb + 1 != ne) {
lazy[2 * n] += lazy[n];
lazy[2 * n + 1] += lazy[n];
}
lazy[n] = 0;
}
}
void add(int l, int r, int64_t d, int n, int nb, int ne) {
update(n, nb, ne);
if (nb >= r || ne <= l) return;
if (l <= nb && ne <= r) {
lazy[n] = d;
update(n, nb, ne);
return;
}
add(l, r, d, 2 * n, nb, (nb + ne) / 2);
add(l, r, d, 2 * n + 1, (nb + ne) / 2, ne);
arr[n] = max(arr[2 * n], arr[2 * n + 1]);
}
public:
void add(int l, int r, int64_t d) { add(l, r, d, 1, 0, size); }
int64_t query() {
update(1, 0, size);
return arr[1];
}
SegTree() {}
SegTree(vector<int64_t> vals) {
size = 1 << (32 - __builtin_clz(vals.size() - 1));
arr.resize(size * 2, -INF);
lazy.resize(size * 2);
for (int i = 0; i < vals.size(); i++)
arr[i + size] = vals[i];
for (int i = size - 1; i > 0; i--)
arr[i] = max(arr[2 * i], arr[2 * i + 1]);
};
};
class Tree {
vector<vector<tuple<int, int, int64_t>>> adj;
int centroid_tree_root;
vector<vector<tuple<int, int, int>>> ranges;
vector<SegTree> segtrees;
vector<set<pair<int64_t, int>, greater<>>> sizes, subtrees;
public:
int64_t diameter() {
return sizes[centroid_tree_root].begin()->first;
}
int64_t get_max_path(int c) {
if (subtrees[c].size() > 1) return subtrees[c].begin()->first + next(subtrees[c].begin())->first;
if (subtrees[c].size() == 1) return subtrees[c].begin()->first;
return 0;
}
void update(int edge, int64_t d) {
int old = -1;
int64_t old_max_seg, old_max_path;
for (auto [c, l, r]: ranges[edge]) {
int64_t new_old_max_seg = segtrees[c].query();
int64_t new_old_max_path = sizes[c].begin()->first;
int64_t old_max_path_through = get_max_path(c);
if (old != -1) {
subtrees[c].erase({old_max_seg, old});
sizes[c].erase({old_max_path, old});
subtrees[c].emplace(segtrees[old].query(), old);
sizes[c].emplace(sizes[old].begin()->first, old);
}
segtrees[c].add(l, r, d);
sizes[c].erase({old_max_path_through, c});
sizes[c].emplace(get_max_path(c), c);
old_max_seg = new_old_max_seg;
old_max_path = new_old_max_path;
old = c;
}
}
Tree(int n, vector<tuple<int, int, int64_t>> edges) :
adj(n), ranges(n - 1), segtrees(n), sizes(n), subtrees(n)
{
for (int i = 0; i < n - 1; i++) {
auto [u, v, w] = edges[i];
adj[u].emplace_back(v, i ,w);
adj[v].emplace_back(u, i, w);
}
vector<bool> nodes(n);
vector<int> parent(n);
vector<int64_t> dfs_order;
function<int(int, int, vector<int>&)> populate = [&](int node, int par, vector<int> &size) {
size[node] = 1;
for (auto [n, i, w]: adj[node]) {
if (n == par || nodes[n]) continue;
parent[n] = node;
size[node] += populate(n, node, size);
}
return size[node];
};
function<void(int, int, int, int64_t)> get_dfs_order = [&](int node, int in_edge, int centroid, int64_t d) {
int start = dfs_order.size();
dfs_order.push_back(d);
for (auto [n, i, w]: adj[node]) {
if (i == in_edge || nodes[n]) continue;
get_dfs_order(n, i, centroid, d + w);
}
int end = dfs_order.size();
if (in_edge >= 0) ranges[in_edge].emplace_back(centroid, start, end);
};
function<int(int, int, int64_t)> make_centroid_tree = [&](int root, int curr_size, int64_t d) -> int {
vector<int> size(n);
populate(root, -1, size);
parent[root] = -1;
int centroid = root;
for (;;) {
bool found = true;
for (auto [n, i, w]: adj[centroid]) {
if (!nodes[n] && n != parent[centroid] && 2 * size[n] > curr_size) {
centroid = n;
found = false;
break;
}
}
if (found) break;
}
dfs_order.clear();
get_dfs_order(root, -1, centroid, d);
segtrees[centroid] = SegTree(dfs_order);
nodes[centroid] = true;
for (auto [n, i, w]: adj[centroid]) {
if (nodes[n]) continue;
if (n == parent[centroid]) {
int c = make_centroid_tree(n, curr_size - size[centroid], w);
ranges[i].emplace_back(c, 0, curr_size - size[centroid]);
sizes[centroid].emplace(sizes[c].begin()->first, c);
subtrees[centroid].emplace(segtrees[c].query(), c);
} else {
int c = make_centroid_tree(n, size[n], w);
ranges[i].emplace_back(c, 0, size[n]);
sizes[centroid].emplace(sizes[c].begin()->first, c);
subtrees[centroid].emplace(segtrees[c].query(), c);
}
}
sizes[centroid].emplace(get_max_path(centroid), centroid);
return centroid;
};
centroid_tree_root = make_centroid_tree(0, n, 0);
for (auto &vec: ranges) {
reverse(vec.begin(), vec.end());
}
}
};
int main() {
ios::sync_with_stdio(false); cin.tie(NULL);
int n, q; cin >> n >> q;
int64_t w; cin >> w;
vector<int64_t> edge_weights(n - 1);
vector<tuple<int, int, int64_t>> edges(n - 1);
for (int i = 0; i < n - 1; i++) {
auto &[u, v, w] = edges[i];
cin >> u >> v >> w;
u--, v--;
edge_weights[i] = w;
}
Tree tree(n, edges);
int64_t last = 0;
while (q--) {
int edge; cin >> edge;
int64_t new_w; cin >> new_w;
edge = (edge + last) % (n - 1);
new_w = (new_w + last) % w;
tree.update(edge, new_w - edge_weights[edge]);
cout << (last = tree.diameter()) << "\n";
edge_weights[edge] = new_w;
}
}
컴파일 시 표준 에러 (stderr) 메시지
diameter.cpp: In constructor 'SegTree::SegTree(std::vector<long int>)':
diameter.cpp:50:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
50 | for (int i = 0; i < vals.size(); i++)
| ~~^~~~~~~~~~~~~
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |