Submission #794256

#TimeUsernameProblemLanguageResultExecution timeMemory
794256flappybirdTravelling Trader (CCO23_day2problem2)C++17
0 / 25
4 ms5120 KiB
#include <bits/stdc++.h> #include <cassert> #pragma GCC optimize("O3") #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #pragma GCC target("avx,avx2,fma") using namespace std; typedef long long ll; typedef pair<ll, ll> pll; typedef pair<int, int> pii; #define MAX 202300 #define MAXS 20 #define INF 100000000000000001 #define bb ' ' #define ln '\n' #define Ln '\n' int C[MAX]; vector<int> adj[MAX]; int N, K; namespace k1 { ll sum[MAX]; int mv[MAX]; void dfs(int x, int p = 0) { sum[x] = C[x]; for (auto v : adj[x]) if (v != p) { dfs(v, x); if (sum[v] > sum[mv[x]]) mv[x] = v; } sum[x] += sum[mv[x]]; } void solve() { dfs(1); vector<int> ansv; int v = 1; ll ans = 0; while (1) { ansv.push_back(v); ans += C[v]; v = mv[v]; if (!v) break; } cout << ans << ln; cout << ansv.size() << ln; for (auto v : ansv) cout << v << bb; } } namespace k2 { typedef pair<ll, int> pli; ll dp[MAX]; ll end[2][MAX]; int dpath[MAX]; // dp path pii epath[MAX]; // end path int chk[MAX]; int e1path[MAX][3]; // 0 : child -> calc(c) -> another calc(c) -> down(c, 0) // 1 : child -> calc(c) -> down(c, 1) const int DEBUG = 0; int sp[MAX][MAXS]; int dep[MAX] = { 0, 1 }; void dfs(int x, int p = 0) { if (DEBUG) { sp[x][0] = p; int i; for (i = 1; i < MAXS; i++) sp[x][i] = sp[sp[x][i - 1]][i - 1]; } pli me[3]; //max end pli me1[3]; //max end pli md[3]; //max dp int i, j, k; for (i = 0; i < 3; i++) me1[i] = me[i] = md[i] = pli(-INF, -1); dp[x] += C[x]; end[0][x] += C[x]; end[1][x] += C[x]; if (p && adj[x].size() == 1) { end[1][x] = -INF; return; } int pv = 0; for (auto v : adj[x]) if (v != p) { pv = v; if (DEBUG) dep[v] = dep[x] + 1; dfs(v, x); dp[x] += C[v]; end[0][x] += C[v]; end[1][x] += C[v]; pli d = pli(dp[v] - C[v], v); pli e = pli(end[0][v] - C[v], v); pli e1 = pli(end[1][v] - C[v], v); me[2] = max(me[2], e); md[2] = max(md[2], d); me1[2] = max(me1[2], e1); for (i = 2; i >= 1; i--) if (me[i] > me[i - 1]) swap(me[i], me[i - 1]); for (i = 2; i >= 1; i--) if (me1[i] > me1[i - 1]) swap(me1[i], me1[i - 1]); for (i = 2; i >= 1; i--) if (md[i] > md[i - 1]) swap(md[i], md[i - 1]); } dpath[x] = md[0].second; dp[x] += md[0].first; epath[x].second = pv; int c = 0; if (p && adj[x].size() <= 2) c = 1; if (!p && adj[x].size() == 1) c = 1; if (c) { end[0][x] += me[0].first; if (end[0][x] < end[1][pv] + C[x]) { epath[x] = pii(-1, pv); end[0][x] = end[1][pv] + C[x]; } end[1][x] = -INF; //------------------------------------------- return; } ll mx = -INF; if (md[0].second != me[0].second) { mx = md[0].first + me[0].first; epath[x] = pii(md[0].second, me[0].second); } else { if (mx < md[0].first + me[1].first) { mx = md[0].first + me[1].first; epath[x] = pii(md[0].second, me[1].second); assert(md[0].second != me[1].second); } if (mx < md[1].first + me[0].first) { mx = md[1].first + me[0].first; epath[x] = pii(md[1].second, me[0].second); assert(md[1].second != me[0].second); } } if (mx < me1[0].first) { mx = me1[0].first; epath[x] = pii(-1, me1[0].second); } end[0][x] += mx; mx = -INF; for (i = 0; i < 3; i++) for (j = i + 1; j < 3; j++) { if (!~me[i].second) continue; if (!~me[j].second) continue; for (k = 0; k < 3; k++) { if (!~me[k].second) continue; if (me[k].second == md[i].second) continue; if (me[k].second == md[j].second) continue; ll sum = me[k].first + md[i].first + md[j].first; if (mx < sum) { mx = sum; e1path[x][0] = md[i].second; e1path[x][1] = md[j].second; e1path[x][2] = me[k].second; } } } for (i = 0; i < 2; i++) { if (!~md[i].second) continue; for (j = 0; j < 2; j++) { if (!~me1[j].second) continue; if (md[i].second == me1[j].second) continue; ll sum = md[i].first + me1[j].first; if (mx < sum) { mx = sum; chk[x] = 1; e1path[x][0] = md[i].second; e1path[x][1] = me1[j].second; } } } end[1][x] += mx; } inline int lca(int u, int v) { int i; if (dep[u] != dep[v]) { if (dep[u] > dep[v]) swap(u, v); int d = dep[v] - dep[u]; for (i = 0; i < MAXS; i++) if (d >> i & 1) v = sp[v][i]; } if (u == v) return u; for (i = MAXS - 1; i >= 0; i--) if (sp[u][i] != sp[v][i]) u = sp[u][i], v = sp[v][i]; return sp[u][0]; } int dis(int u, int v) { return dep[u] + dep[v] - 2 * dep[lca(u, v)]; } vector<int> ansv; void calc(int x, int c, int p = 0) { if (adj[x].size() == 1) { ansv.push_back(x); return; } if (!c) ansv.push_back(x), calc(dpath[x], c ^ 1, x); for (auto v : adj[x]) if (v != p && dpath[x] != v) ansv.push_back(v); if (c) calc(dpath[x], c ^ 1, x), ansv.push_back(x); } void down(int x, int c, int p = 0) { if (!c) { ansv.push_back(x); if (p && adj[x].size() == 1) return; if (!~epath[x].first) { down(epath[x].second, 1, x); return; } if (epath[x].first) calc(epath[x].first, 1, x); for (auto v : adj[x]) if (v != p) { if (v == epath[x].first) continue; if (v == epath[x].second) continue; ansv.push_back(v); } down(epath[x].second, 0, x); } else { assert(adj[x].size() > 2); for (auto v : adj[x]) if (v != p) { if (v == e1path[x][0]) continue; if (v == e1path[x][1]) continue; if (v == e1path[x][2]) continue; ansv.push_back(v); } calc(e1path[x][0], 0, x); ansv.push_back(x); if (chk[x]) down(e1path[x][1], 1, x); else { calc(e1path[x][1], 1, x); down(e1path[x][2], 0, x); } } } void solve() { ll sum = 0; dfs(1); down(1, 0); for (auto v : ansv) sum += C[v]; cout << sum << ln; cout << ansv.size() << ln; //cout << end[0][1] << ln; for (auto v : ansv) cout << v << bb, sum += C[v]; int i; for (i = 1; i < ansv.size(); i++) { if (DEBUG) cout << i << ln; assert(dis(ansv[i], ansv[i - 1]) <= 2); } vector<int> cpy = ansv; sort(cpy.begin(), cpy.end()); cpy.erase(unique(cpy.begin(), cpy.end()), cpy.end()); assert(cpy.size() == ansv.size()); //assert(sum == end[0][1]); } } namespace k3 { vector<int> ansv; void dfs(int x, int c, int p = 0) { if (c) ansv.push_back(x); for (auto v : adj[x]) if (v != p) dfs(v, c ^ 1, x); if (!c) ansv.push_back(x); } void solve() { ll sum = 0; int i; for (i = 1; i <= N; i++) sum += C[i]; dfs(1, 1); cout << sum << ln; cout << N << Ln; for (auto v : ansv) cout << v << bb; } } signed main() { ios::sync_with_stdio(false), cin.tie(0); cin >> N >> K; int i, a, b; for (i = 1; i < N; i++) { cin >> a >> b; adj[a].push_back(b); adj[b].push_back(a); } for (i = 1; i <= N; i++) cin >> C[i]; //if (K == 1) k1::solve(); if (K == 2) k2::solve(); //if (K == 3) k3::solve(); }

Compilation message (stderr)

Main.cpp: In function 'void k2::solve()':
Main.cpp:233:17: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  233 |   for (i = 1; i < ansv.size(); i++) {
      |               ~~^~~~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...