Submission #792751

# Submission time Handle Problem Language Result Execution time Memory
792751 2023-07-25T08:29:47 Z 이동현(#10054) Binaria (CCO23_day1problem1) C++17
0 / 25
5 ms 11988 KB
#include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
using namespace std;

const int NS = (int)1e6 + 4, mod = (int)1e6 + 3;
int n, k;
int a[NS];
int r[NS], l[NS], chk[NS], isin[NS];
int ran[NS][3];

long long pw(int x, int y){
    if(!y) return 1;
    if(y == 1) return x;
    int v = pw(x, y / 2);
    return (long long)v * v % mod * (y % 2 ? x : 1) % mod;
}

int fdr(int x){
    return (x == r[x] ? x : r[x] = fdr(r[x]));
}

int fdl(int x){
    return (x == l[x] || x == -1 ? x : l[x] = fdl(l[x]));
}

struct Fenwick{
    int n;
    vector<int> tr;
    Fenwick(int m){
        n = m + 4;
        tr.resize(n);
    }

    void push(int pos, int val){
        pos += 2;
        for(int i = pos; i < n; i += (i & -i)){
            tr[i] += val;
        }
    }

    int get(int pos){
        int rv = 0;
        pos += 2;
        for(int i = pos; i > 0; i -= (i & -i)){
            rv += tr[i];
        }

        return rv;
    }

    int get(int l, int r){
        return get(r) - get(l - 1);
    }
};

signed main(){
    ios_base::sync_with_stdio(false);
    cin.tie(0);

    iota(r, r + NS, 0);
    iota(l, l + NS, 0);
    memset(chk, -1, sizeof(chk));

    int n, k;
    cin >> n >> k;
    vector<int> a(n - k + 1);
    for(int i = 0; i < n - k + 1; ++i){
        cin >> a[i];
    }
    Fenwick tr(n);

    auto cant = [&]{
        cout << "0\n";
        exit(0);
    };

    queue<int> que;

    for(int i = 0; i < n - k + 1; ++i){
        ran[i][0] = i, ran[i][1] = i + k - 1, ran[i][2] = a[i];
        que.push(i);
        ++isin[i];
    }

    auto upd = [&](int pos, int val){
        assert(chk[pos] == -1);
        // cout << "UPD " << pos << ' ' << val << endl;
        if(val < 0 || val > 1) cant();

        int low = 0, high = n - k, mid;
        while(low < high){
            mid = low + high + 1 >> 1;
            if(ran[mid][0] <= ran[mid][1] && chk[ran[mid][1]] != -1){
                int nl = fdl(ran[mid][1]);
                ran[mid][2] -= tr.get(max(nl + 1, ran[mid][0]), ran[mid][1]);
                ran[mid][1] = nl;
                if(ran[mid][0] > ran[mid][1] && ran[mid][2]) cant();
            }
            if(ran[mid][1] < pos){
                low = mid;
            }
            else{
                high = mid - 1;
            }
        }
        if(!isin[low]) que.push(low), ++isin[low];

        low = 0, high = n - k;
        while(low < high){
            mid = low + high >> 1;
            if(ran[mid][0] <= ran[mid][1] && chk[ran[mid][0]] != -1){
                int nl = fdr(ran[mid][0]);
                ran[mid][2] -= tr.get(ran[mid][0], min(nl - 1, ran[mid][1]));
                ran[mid][0] = nl;
                if(ran[mid][0] > ran[mid][1] && ran[mid][2]) cant();
            }
            if(ran[mid][0] > pos){
                high = mid;
            }
            else{
                low = mid + 1;
            }
        }
        if(!isin[low]) que.push(low), ++isin[low];

        chk[pos] = val;
        tr.push(pos, val);
        l[pos] = pos - 1;
        r[pos] = pos + 1;
    };

    int rep = 0;
    while(!que.empty()){
        ++rep;
        int i = que.front();
        --isin[i];
        que.pop();
        if(i < 0 || i >= n - k || ran[i][0] > ran[i][1] || ran[i + 1][0] >= ran[i + 1][1]) continue;

        if(chk[ran[i][0]] != -1){
            int nl = fdr(ran[i][0]);
            ran[i][2] -= tr.get(ran[i][0], min(nl - 1, ran[i][1]));
            ran[i][0] = nl;
            if(ran[i][0] > ran[i][1] && ran[i][2]) cant();
        }
        if(chk[ran[i][1]] != -1){
            int nl = fdl(ran[i][1]);
            ran[i][2] -= tr.get(max(ran[i][0], nl + 1), ran[i][1]);
            ran[i][1] = nl;
            if(ran[i][0] > ran[i][1] && ran[i][2]) cant();
        }
        if(chk[ran[i + 1][0]] != -1){
            int nl = fdr(ran[i + 1][0]);
            ran[i + 1][2] -= tr.get(ran[i + 1][0], min(ran[i + 1][1], nl - 1));
            ran[i + 1][0] = nl;
            if(ran[i + 1][0] > ran[i + 1][1] && ran[i + 1][2]) cant();
        }
        if(chk[ran[i + 1][1]] != -1){
            int nl = fdl(ran[i + 1][1]);
            ran[i + 1][2] -= tr.get(max(ran[i + 1][0], nl + 1), ran[i + 1][1]);
            ran[i + 1][1] = nl;
            if(ran[i + 1][0] > ran[i + 1][1] && ran[i + 1][2]) cant();
        }

        int sval = ran[i][2] - tr.get(ran[i][0], ran[i][1]);
        int nval = ran[i + 1][2] - tr.get(ran[i + 1][0], ran[i + 1][1]);
        if(ran[i][0] > ran[i][1] || ran[i + 1][0] > ran[i + 1][1]) continue;
        if(ran[i][0] == ran[i + 1][0] && ran[i][1] == ran[i + 1][1]){
            if(sval != nval) cant();
            continue;
        }
        if(ran[i][0] < ran[i + 1][0] && ran[i][1] < ran[i + 1][1] && sval == nval){
            continue;
        }
        
        if(!isin[i + 1]) que.push(i + 1), ++isin[i + 1];
        if(i && !isin[i - 1]) que.push(i - 1), ++isin[i - 1];

        if(ran[i][0] == ran[i + 1][0]){
            upd(ran[i + 1][1], nval - sval);
        }
        else if(ran[i][1] == ran[i + 1][1]){
            upd(ran[i][0], sval - nval);
        }
        else{
            if(sval > nval){
                upd(ran[i][0], sval - nval);
                upd(ran[i + 1][1], 0);
            }
            else{
                upd(ran[i + 1][1], nval - sval);
                upd(ran[i][0], 0);
            }
        }
    }

    int stval = 0;
    while(stval < n - k + 1){
        if(chk[ran[stval][0]] != -1){
            int nl = fdr(ran[stval][0]);
            ran[stval][2] -= tr.get(ran[stval][0], min(ran[stval][1], nl - 1));
            ran[stval][0] = nl;
            if(ran[stval][0] > ran[stval][1] && ran[stval][2]) cant();
        }
        if(chk[ran[stval][1]] != -1){
            int nl = fdl(ran[stval][1]);
            ran[stval][2] -= tr.get(max(ran[stval][0], nl + 1), ran[stval][1]);
            ran[stval][1] = nl;
            if(ran[stval][0] > ran[stval][1] && ran[stval][2]) cant();
        }
        if(ran[stval][0] <= ran[stval][1]) break;
        ++stval;
    }
    if(stval == n - k + 1){
        cout << "1\n";
        return 0;
    }
    int ac = 0, oc = a[stval];
    assert(stval + k <= n);
    for(int i = stval; i < stval + k; ++i){
        ac += (chk[i] == -1);
        oc -= (chk[i] == 1);
    }

    long long ans = 1;
    for(int i = oc + 1; i <= ac; ++i){
        (ans *= i) %= mod;
    }
    for(int i = 2; i <= ac - oc; ++i){
        (ans *= pw(i, mod - 2)) %= mod;
    }

    cout << ans << '\n';
    
    return 0;
}

Compilation message

Main.cpp: In lambda function:
Main.cpp:94:30: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   94 |             mid = low + high + 1 >> 1;
      |                   ~~~~~~~~~~~^~~
Main.cpp:112:23: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
  112 |             mid = low + high >> 1;
      |                   ~~~~^~~~~~
# Verdict Execution time Memory Grader output
1 Correct 5 ms 11988 KB Output is correct
2 Correct 5 ms 11988 KB Output is correct
3 Correct 5 ms 11988 KB Output is correct
4 Incorrect 5 ms 11988 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 11988 KB Output is correct
2 Correct 5 ms 11988 KB Output is correct
3 Correct 5 ms 11988 KB Output is correct
4 Incorrect 5 ms 11988 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 11988 KB Output is correct
2 Correct 5 ms 11988 KB Output is correct
3 Correct 5 ms 11988 KB Output is correct
4 Incorrect 5 ms 11988 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 11988 KB Output is correct
2 Correct 5 ms 11988 KB Output is correct
3 Correct 5 ms 11988 KB Output is correct
4 Incorrect 5 ms 11988 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 11988 KB Output is correct
2 Correct 5 ms 11988 KB Output is correct
3 Correct 5 ms 11988 KB Output is correct
4 Incorrect 5 ms 11988 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 11988 KB Output is correct
2 Correct 5 ms 11988 KB Output is correct
3 Correct 5 ms 11988 KB Output is correct
4 Incorrect 5 ms 11988 KB Output isn't correct
5 Halted 0 ms 0 KB -