Submission #792630

# Submission time Handle Problem Language Result Execution time Memory
792630 2023-07-25T07:36:11 Z 이동현(#10054) Binaria (CCO23_day1problem1) C++17
6 / 25
14 ms 23900 KB
#include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#define int long long
using namespace std;

const int NS = (int)1e6 + 4, mod = (int)1e6 + 3;
int n, k;
int a[NS];
int r[NS], l[NS], chk[NS];

int pw(int x, int y){
    if(!y) return 1;
    if(y == 1) return x;
    int v = pw(x, y / 2);
    return v * v % mod * (y % 2 ? x : 1) % mod;
}

int fdr(int x){
    return (x == r[x] ? x : r[x] = fdr(r[x]));
}

int fdl(int x){
    return (x == l[x] || x == -1 ? x : l[x] = fdl(l[x]));
}

struct Fenwick{
    int n;
    vector<int> tr;
    Fenwick(int m){
        n = m + 4;
        tr.resize(n);
    }

    void push(int pos, int val){
        pos += 2;
        for(int i = pos; i < n; i += (i & -i)){
            tr[i] += val;
        }
    }

    int get(int pos){
        int rv = 0;
        pos += 2;
        for(int i = pos; i > 0; i -= (i & -i)){
            rv += tr[i];
        }

        return rv;
    }

    int get(int l, int r){
        if(l > r) return 0;
        return get(r) - get(l - 1);
    }
};

signed main(){
    ios_base::sync_with_stdio(false);
    cin.tie(0);

    iota(r, r + NS, 0);
    iota(l, l + NS, 0);
    memset(chk, -1, sizeof(chk));

    int n, k;
    cin >> n >> k;
    vector<int> a(n - k + 1);
    for(int i = 0; i < n - k + 1; ++i){
        cin >> a[i];
    }
    Fenwick tr(n);

    auto cant = [&]{
        cout << "0\n";
        exit(0);
    };

    auto nor = [&](vector<int> x)->vector<int>{
        if(x[0] > x[1]) return x;
        int nl = fdr(x[0]);
        int nr = fdl(x[1]);
        if(nl > nr){
            int nv = x[2] - tr.get(x[0], x[1]);
            if(nv) cant();
            return {nl, nr, 0};
        }
        int nv = x[2] - tr.get(x[0], nl - 1) - tr.get(nr + 1, x[1]);
        return {nl, nr, nv};
    };

    auto upd = [&](int pos, int val){
        if(val < 0 || val > 1) cant();
        chk[pos] = val;
        tr.push(pos, val);
        l[pos] = pos - 1;
        r[pos] = pos + 1;
    };

    deque<vector<int>> stk;
    stk.push_back({0, k - 1, a[0]});
    int stval = 0;
    for(int i = 1; i < n - k + 1; ++i){
        vector<int> now = nor({i, i + k - 1, a[i]});
        if(!(int)stk.size()){
            upd(now[1], now[2]);
            continue;
        }
        while((int)stk.size()){
            stk.back() = nor(stk.back());
            // cout << stk.back()[0] << ' ' << stk.back()[1] << ' ' << now[0] << ' ' << now[1] << endl;
            if(stk.back()[0] == stk.back()[1]) break;

            int sval = stk.back()[2] - tr.get(stk.back()[0], stk.back()[1]);
            int nval = now[2] - tr.get(now[0], now[1]);
            if(sval == nval) break;

            int p = -1;
            int cut = stk.back()[0];
            while(p + 1 < (int)stk.size() && (stk[p + 1] = nor(stk[p + 1]))[1] < cut){
                ++p;
            }

            if(stk.back()[0] == now[0]){
                upd(now[1], nval - sval);
                p = -1;
            }
            else if(sval > nval){
                upd(stk.back()[0], sval - nval);
                upd(now[1], 0);
            }
            else{
                upd(now[1], nval - sval);
                upd(stk.back()[0], 0);
            }

            for(int j = p; j >= 0; --j){
                stk[j] = nor(stk[j]);
                stk[j + 1] = nor(stk[j + 1]);
                int val = stk[j][2] - tr.get(stk[j][0], stk[j][1]);
                if(stk[j][0] >= stk[j + 1][0]) val -= stk[j + 1][2] - tr.get(stk[j + 1][0], stk[j + 1][1]);
                // cout << "NOR " << stk[j][0] << ' ' << stk[j][1] << ' ' << stk[j + 1][0] << ' ' << stk[j + 1][1] << ' ' << val << endl;
                upd(stk[j][0], val);
                ++stval;
            }
            for(int j = 0; j <= p; ++j) stk.pop_front();

            now = nor(now);
            stk.pop_back();
        }

        while((int)stk.size()){
            stk.back() = nor(stk.back());
            if(stk.back()[0] < stk.back()[1]) break;
            upd(stk.back()[1], stk.back()[2]);
            stk.pop_back();
        }

        if(now[0] < now[1]){
            stk.push_back(now);
        }
        else if(now[0] == now[1]){
            upd(now[1], now[2]);
        }
    }

    if(!(int)stk.size()){
        cout << "1\n";
        return 0;
    }

    int ac = 0, oc = a[stval];
    for(int i = stval; i < stval + k; ++i){
        ac += (chk[i] == -1);
        oc -= (chk[i] == 1);
    }

    int ans = 1;
    for(int i = oc + 1; i <= ac; ++i){
        (ans *= i) %= mod;
    }
    for(int i = 2; i <= ac - oc; ++i){
        (ans *= pw(i, mod - 2)) %= mod;
    }

    auto naive = [&]{
        vector<vector<int>> ran(n - k + 1);
        for(int i = 0; i < n - k + 1; ++i){
            ran[i] = {i, i + k - 1, a[i]};
        }
        while(true){
            int f = 0;
            for(int i = 0; i + 1 < (int)ran.size(); ++i){
                ran[i] = nor(ran[i]);
                // cout << i << ' ' << ran[i + 1][0] << ' ' << ran[i + 1][1] << ' ' << ran[i + 1][2] << endl;
                ran[i + 1] = nor(ran[i + 1]);
                int sval = ran[i][2] - tr.get(ran[i][0], ran[i][1]);
                int nval = ran[i + 1][2] - tr.get(ran[i + 1][0], ran[i + 1][1]);
                if(ran[i][0] > ran[i][1] || ran[i + 1][0] > ran[i + 1][1]) continue;
                if(ran[i][0] == ran[i + 1][0] && ran[i][1] == ran[i + 1][1]){
                    if(sval != nval) cant();
                    continue;
                }
                if(ran[i][0] < ran[i + 1][0] && ran[i][1] < ran[i + 1][1] && sval == nval){
                    continue;
                }

                f = 1;
                // cout << i << ' ' << sval << ' ' << nval << endl;

                if(ran[i][0] == ran[i + 1][0]){
                    upd(ran[i + 1][1], nval - sval);
                }
                else if(ran[i][1] == ran[i + 1][1]){
                    upd(ran[i][0], sval - nval);
                }
                else{
                    if(sval > nval){
                        upd(ran[i][0], sval - nval);
                        upd(ran[i + 1][1], 0);
                    }
                    else{
                        upd(ran[i + 1][1], nval - sval);
                        upd(ran[i][0], 0);
                    }
                }
            }
            if(!f) break;
        }

        // cout << "HI" << endl;

        int stval = 0;
        while(stval < n - k + 1){
            ran[stval] = nor(ran[stval]);
            if(ran[stval][0] <= ran[stval][1]) break;
            ++stval;
        }
        if(stval == n - k + 1){
            return 1ll;
        }
        int ac = 0, oc = a[stval];
        for(int i = stval; i < stval + k; ++i){
            ac += (chk[i] == -1);
            oc -= (chk[i] == 1);
        }

        int ans = 1;
        for(int i = oc + 1; i <= ac; ++i){
            (ans *= i) %= mod;
        }
        for(int i = 2; i <= ac - oc; ++i){
            (ans *= pw(i, mod - 2)) %= mod;
        }

        return ans;
    };

    tr = Fenwick(n);
    iota(r, r + NS, 0);
    iota(l, l + NS, 0);
    memset(chk, -1, sizeof(chk));
    // assert(ans == naive());
    cout << naive() << '\n';
    
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 13 ms 23764 KB Output is correct
2 Correct 12 ms 23756 KB Output is correct
3 Correct 14 ms 23764 KB Output is correct
4 Correct 11 ms 23764 KB Output is correct
5 Correct 12 ms 23764 KB Output is correct
6 Correct 11 ms 23764 KB Output is correct
7 Correct 13 ms 23732 KB Output is correct
8 Correct 12 ms 23708 KB Output is correct
9 Correct 11 ms 23764 KB Output is correct
10 Correct 9 ms 23764 KB Output is correct
11 Correct 8 ms 23764 KB Output is correct
12 Correct 10 ms 23764 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 13 ms 23764 KB Output is correct
2 Correct 12 ms 23756 KB Output is correct
3 Correct 14 ms 23764 KB Output is correct
4 Correct 11 ms 23764 KB Output is correct
5 Correct 12 ms 23764 KB Output is correct
6 Correct 11 ms 23764 KB Output is correct
7 Correct 13 ms 23732 KB Output is correct
8 Correct 12 ms 23708 KB Output is correct
9 Correct 11 ms 23764 KB Output is correct
10 Correct 9 ms 23764 KB Output is correct
11 Correct 8 ms 23764 KB Output is correct
12 Correct 10 ms 23764 KB Output is correct
13 Correct 13 ms 23764 KB Output is correct
14 Correct 10 ms 23812 KB Output is correct
15 Correct 10 ms 23732 KB Output is correct
16 Correct 11 ms 23764 KB Output is correct
17 Correct 11 ms 23748 KB Output is correct
18 Correct 10 ms 23808 KB Output is correct
19 Correct 13 ms 23740 KB Output is correct
20 Correct 10 ms 23764 KB Output is correct
21 Correct 11 ms 23812 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 13 ms 23764 KB Output is correct
2 Correct 12 ms 23756 KB Output is correct
3 Correct 14 ms 23764 KB Output is correct
4 Correct 11 ms 23764 KB Output is correct
5 Correct 12 ms 23764 KB Output is correct
6 Correct 11 ms 23764 KB Output is correct
7 Correct 13 ms 23732 KB Output is correct
8 Correct 12 ms 23708 KB Output is correct
9 Correct 11 ms 23764 KB Output is correct
10 Correct 9 ms 23764 KB Output is correct
11 Correct 8 ms 23764 KB Output is correct
12 Correct 10 ms 23764 KB Output is correct
13 Correct 13 ms 23764 KB Output is correct
14 Correct 10 ms 23812 KB Output is correct
15 Correct 10 ms 23732 KB Output is correct
16 Correct 11 ms 23764 KB Output is correct
17 Correct 11 ms 23748 KB Output is correct
18 Correct 10 ms 23808 KB Output is correct
19 Correct 13 ms 23740 KB Output is correct
20 Correct 10 ms 23764 KB Output is correct
21 Correct 11 ms 23812 KB Output is correct
22 Correct 12 ms 23900 KB Output is correct
23 Incorrect 12 ms 23764 KB Output isn't correct
24 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 13 ms 23764 KB Output is correct
2 Correct 12 ms 23756 KB Output is correct
3 Correct 14 ms 23764 KB Output is correct
4 Correct 11 ms 23764 KB Output is correct
5 Correct 12 ms 23764 KB Output is correct
6 Correct 11 ms 23764 KB Output is correct
7 Correct 13 ms 23732 KB Output is correct
8 Correct 12 ms 23708 KB Output is correct
9 Correct 11 ms 23764 KB Output is correct
10 Correct 9 ms 23764 KB Output is correct
11 Correct 8 ms 23764 KB Output is correct
12 Correct 10 ms 23764 KB Output is correct
13 Correct 13 ms 23764 KB Output is correct
14 Correct 10 ms 23812 KB Output is correct
15 Correct 10 ms 23732 KB Output is correct
16 Correct 11 ms 23764 KB Output is correct
17 Correct 11 ms 23748 KB Output is correct
18 Correct 10 ms 23808 KB Output is correct
19 Correct 13 ms 23740 KB Output is correct
20 Correct 10 ms 23764 KB Output is correct
21 Correct 11 ms 23812 KB Output is correct
22 Correct 12 ms 23900 KB Output is correct
23 Incorrect 12 ms 23764 KB Output isn't correct
24 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 13 ms 23764 KB Output is correct
2 Correct 12 ms 23756 KB Output is correct
3 Correct 14 ms 23764 KB Output is correct
4 Correct 11 ms 23764 KB Output is correct
5 Correct 12 ms 23764 KB Output is correct
6 Correct 11 ms 23764 KB Output is correct
7 Correct 13 ms 23732 KB Output is correct
8 Correct 12 ms 23708 KB Output is correct
9 Correct 11 ms 23764 KB Output is correct
10 Correct 9 ms 23764 KB Output is correct
11 Correct 8 ms 23764 KB Output is correct
12 Correct 10 ms 23764 KB Output is correct
13 Correct 13 ms 23764 KB Output is correct
14 Correct 10 ms 23812 KB Output is correct
15 Correct 10 ms 23732 KB Output is correct
16 Correct 11 ms 23764 KB Output is correct
17 Correct 11 ms 23748 KB Output is correct
18 Correct 10 ms 23808 KB Output is correct
19 Correct 13 ms 23740 KB Output is correct
20 Correct 10 ms 23764 KB Output is correct
21 Correct 11 ms 23812 KB Output is correct
22 Correct 12 ms 23900 KB Output is correct
23 Incorrect 12 ms 23764 KB Output isn't correct
24 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 13 ms 23764 KB Output is correct
2 Correct 12 ms 23756 KB Output is correct
3 Correct 14 ms 23764 KB Output is correct
4 Correct 11 ms 23764 KB Output is correct
5 Correct 12 ms 23764 KB Output is correct
6 Correct 11 ms 23764 KB Output is correct
7 Correct 13 ms 23732 KB Output is correct
8 Correct 12 ms 23708 KB Output is correct
9 Correct 11 ms 23764 KB Output is correct
10 Correct 9 ms 23764 KB Output is correct
11 Correct 8 ms 23764 KB Output is correct
12 Correct 10 ms 23764 KB Output is correct
13 Correct 13 ms 23764 KB Output is correct
14 Correct 10 ms 23812 KB Output is correct
15 Correct 10 ms 23732 KB Output is correct
16 Correct 11 ms 23764 KB Output is correct
17 Correct 11 ms 23748 KB Output is correct
18 Correct 10 ms 23808 KB Output is correct
19 Correct 13 ms 23740 KB Output is correct
20 Correct 10 ms 23764 KB Output is correct
21 Correct 11 ms 23812 KB Output is correct
22 Correct 12 ms 23900 KB Output is correct
23 Incorrect 12 ms 23764 KB Output isn't correct
24 Halted 0 ms 0 KB -