Submission #790193

#TimeUsernameProblemLanguageResultExecution timeMemory
790193GrindMachineTenis (COI19_tenis)C++17
100 / 100
217 ms8224 KiB
// Om Namah Shivaya #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; typedef long long int ll; typedef long double ld; typedef pair<int, int> pii; typedef pair<ll, ll> pll; #define fastio ios_base::sync_with_stdio(false); cin.tie(NULL) #define pb push_back #define endl '\n' #define sz(a) a.size() #define setbits(x) __builtin_popcountll(x) #define ff first #define ss second #define conts continue #define ceil2(x, y) ((x + y - 1) / (y)) #define all(a) a.begin(), a.end() #define rall(a) a.rbegin(), a.rend() #define yes cout << "Yes" << endl #define no cout << "No" << endl #define rep(i, n) for(int i = 0; i < n; ++i) #define rep1(i, n) for(int i = 1; i <= n; ++i) #define rev(i, s, e) for(int i = s; i >= e; --i) #define trav(i, a) for(auto &i : a) template<typename T> void amin(T &a, T b) { a = min(a, b); } template<typename T> void amax(T &a, T b) { a = max(a, b); } #ifdef LOCAL #include "debug.h" #else #define debug(x) 42 #endif /* inspired by some submissions from: https://github.com/mostafa-saad/MyCompetitiveProgramming/blob/master/Olympiad/COI/COI-19-tenis.txt the winners are on some pref of court 1 why? because if i cant win and j can win, pos1(i) < pos2(j), then i can win j and hence, can also win the tournament, which is a contradiction same observation can be extended to all courts winners lie on some pref of all courts find the smallest k s.t the multisets a[1..k], b[1..k], c[1..k] are all equal, check if min_pos(i) <= k let's say our current set initially equals a[1..k] when adding guys from b[1..k] and c[1..k], no extra element should be added to the set, otherwise our condition is violated rephrasing the above condition: set_union(a[1..k],b[1..k],c[1..k]).size() = k, then ans is yes verbally, the #of distinct elements in the array {a[1..k]+b[1..k]+c[1..k]} = k find the smallest k that satisfies this condition to find the #of distinct elements in the array formed for some k, just look at the min_pos of each player in all 3 courts combined add 1 at this min_pos for each player find the first pos where sum(1..k)-k = 0 we know that sum(1..k)-k >= 0, so just find the min val and its leftmost occurrence we dont have to find k, just check if i is winning or not, so just check if no zero lies on [1..min_pos(i)-1] i.e min(1..min_pos(i)-1) > 0 */ const int MOD = 1e9 + 7; const int N = 1e5 + 5; const int inf1 = int(1e9) + 5; const ll inf2 = ll(1e18) + 5; template<typename T> struct lazysegtree { /*=======================================================*/ struct data { int a; }; struct lazy { int a; }; data d_neutral = {inf1}; lazy l_neutral = {0}; void merge(data &curr, data &left, data &right) { curr.a = min(left.a,right.a); } void create(int x, int lx, int rx, T v) { } void modify(int x, int lx, int rx, T v) { lz[x].a = v; } void propagate(int x, int lx, int rx) { int v = lz[x].a; if(!v) return; tr[x].a += v; if(rx-lx > 1){ lz[2*x+1].a += v; lz[2*x+2].a += v; } lz[x] = l_neutral; } /*=======================================================*/ int siz = 1; vector<data> tr; vector<lazy> lz; lazysegtree() { } lazysegtree(int n) { while (siz < n) siz *= 2; tr.assign(2 * siz, d_neutral); lz.assign(2 * siz, l_neutral); } void build(vector<T> &a, int n, int x, int lx, int rx) { if (rx - lx == 1) { if (lx < n) { create(x, lx, rx, a[lx]); } return; } int mid = (lx + rx) / 2; build(a, n, 2 * x + 1, lx, mid); build(a, n, 2 * x + 2, mid, rx); merge(tr[x], tr[2 * x + 1], tr[2 * x + 2]); } void build(vector<T> &a, int n) { build(a, n, 0, 0, siz); } void rupd(int l, int r, T v, int x, int lx, int rx) { propagate(x, lx, rx); if (lx >= r or rx <= l) return; if (lx >= l and rx <= r) { modify(x, lx, rx, v); propagate(x, lx, rx); return; } int mid = (lx + rx) / 2; rupd(l, r, v, 2 * x + 1, lx, mid); rupd(l, r, v, 2 * x + 2, mid, rx); merge(tr[x], tr[2 * x + 1], tr[2 * x + 2]); } void rupd(int l, int r, T v) { rupd(l, r + 1, v, 0, 0, siz); } data query(int l, int r, int x, int lx, int rx) { propagate(x, lx, rx); if (lx >= r or rx <= l) return d_neutral; if (lx >= l and rx <= r) return tr[x]; int mid = (lx + rx) / 2; data curr; data left = query(l, r, 2 * x + 1, lx, mid); data right = query(l, r, 2 * x + 2, mid, rx); merge(curr, left, right); return curr; } data query(int l, int r) { return query(l, r + 1, 0, 0, siz); } }; int a[5][N], pos[5][N]; void solve(int test_case) { int n,q; cin >> n >> q; vector<int> mn_pos(n+5,inf1); rep1(p,3){ rep1(i,n) cin >> a[p][i]; rep1(i,n){ int x = a[p][i]; pos[p][x] = i; amin(mn_pos[x],i); } } lazysegtree<int> st(n+5); rep1(i,n){ st.rupd(i,i,-inf1-i); } auto upd = [&](int x, int add){ mn_pos[x] = inf1; rep1(p,3){ amin(mn_pos[x],pos[p][x]); } st.rupd(mn_pos[x],n,add); }; rep1(i,n){ upd(i,1); } while(q--){ int t; cin >> t; if(t == 1){ int i; cin >> i; if(st.query(1,mn_pos[i]-1).a > 0){ cout << "DA" << endl; } else{ cout << "NE" << endl; } } else{ int p,x,y; cin >> p >> x >> y; int i = pos[p][x], j = pos[p][y]; upd(x,-1); upd(y,-1); swap(a[p][i],a[p][j]); swap(pos[p][x],pos[p][y]); upd(x,1); upd(y,1); } } } int main() { fastio; int t = 1; // cin >> t; rep1(i, t) { solve(i); } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...