Submission #787302

# Submission time Handle Problem Language Result Execution time Memory
787302 2023-07-19T04:23:19 Z 79brue Paths (RMI21_paths) C++17
100 / 100
552 ms 64620 KB
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

struct segTree{
    int cnt[800002]; ll sum[800002];

    void update(int i, int l, int r, int x, int v1, ll v2){
        if(l==r){
            cnt[i] += v1, sum[i] += v2;
            return;
        }
        int m = (l+r)>>1;
        if(x<=m) update(i*2, l, m, x, v1, v2);
        else update(i*2+1, m+1, r, x, v1, v2);
        cnt[i] = cnt[i*2] + cnt[i*2+1], sum[i] = sum[i*2] + sum[i*2+1];
    }

    ll query(int i, int l, int r, int x){
        if(l==r) return cnt[i] ? (sum[i] / cnt[i]) * x : 0;
        int m = (l+r)>>1;
        if(cnt[i*2+1] >= x) return query(i*2+1, m+1, r, x);
        else return query(i*2, l, m, x-cnt[i*2+1]) + sum[i*2+1];
    }
} tree;

struct Edge{
    int s, e; ll v; int idx;
    Edge(){}
    Edge(int s, int e, ll v): s(s), e(e), v(v){}
    bool operator<(const Edge &r)const{
        return idx<r.idx;
    }
};

int n, k;
Edge arr[200002];
vector<Edge> link[100002];
int in[100002], out[100002], idx[100002], inCnt;
int par[100002];

void dfs_in(int x, int p=-1){
    in[x] = ++inCnt;
    idx[inCnt] = x;
    par[x] = p;
    for(auto y: link[x]){
        if(y.e == p) continue;
        dfs_in(y.e, x);
    }
    out[x] = inCnt;
}

vector<Edge> linkSet[100002];
ll MX[200002], where[200002]; /// 이 간선 방향으로 갔을 때 최대가 몇인가
vector<pair<ll, ll> > options[100002]; /// 이 정점에서 나갈 수 있는 모든 옵션

pair<ll, int> dfs_getValues(int x, int p=-1){
//    printf("Get value %d %d\n", x, p);
    if(!linkSet[x].empty()){
        vector<Edge> tlst;
        for(Edge y: linkSet[x]){
            if((y.idx ^ p) == 1){
                tlst.push_back(y);
                continue;
            }
            options[x].push_back(make_pair(MX[y.idx] = (dfs_getValues(y.e, y.idx).first + y.v), y.idx));
        }
        linkSet[x].swap(tlst);
        sort(options[x].begin(), options[x].end());
        options[x].erase(unique(options[x].begin(), options[x].end()), options[x].end());
        reverse(options[x].begin(), options[x].end());
    }
    if(options[x].empty()) return make_pair(0, -1);
    else if((options[x][0].second ^ p) != 1) return options[x][0];
    else if((int)options[x].size() == 1) return make_pair(0, -1);
    else return options[x][1];
}

ll numbers[200002];
vector<ll> inQuery[100002], outQuery[100002];
ll ans[100002];

void putQuery(int s, int e, ll p, int mode){
    if(in[s] < in[e]){
        if(mode == 1){
            inQuery[1].push_back(p), outQuery[in[e]].push_back(p);
            if(out[e]+1 <= n+1) inQuery[out[e]+1].push_back(p), outQuery[n+1].push_back(p);
        }
        else{
            outQuery[1].push_back(p), inQuery[in[e]].push_back(p);
            if(out[e]+1 <= n+1) outQuery[out[e]+1].push_back(p), inQuery[n+1].push_back(p);
        }
    }
    else{
        if(mode == 1) inQuery[in[s]].push_back(p), outQuery[out[s]+1].push_back(p);
        else          outQuery[in[s]].push_back(p), inQuery[out[s]+1].push_back(p);
    }
}

int main(){
    scanf("%d %d", &n, &k);
    for(int i=1; i<n; i++){
        scanf("%d %d %lld", &arr[i*2-2].s, &arr[i*2-2].e, &arr[i*2-2].v);
        arr[i*2-1].s = arr[i*2-2].e, arr[i*2-1].e = arr[i*2-2].s, arr[i*2-1].v = arr[i*2-2].v;
        arr[i*2-2].idx = i*2-2, arr[i*2-1].idx = i*2-1;
        link[arr[i*2-2].s].push_back(arr[i*2-2]);
        link[arr[i*2-1].s].push_back(arr[i*2-1]);
    }
    for(int i=1; i<=n; i++) linkSet[i] = link[i];

    dfs_in(1);
    for(int i=0; i<(n-1)*2; i++){
        if(MX[i]) continue;
        pair<ll, int> p = dfs_getValues(arr[i].e, i);
        MX[i] = p.first + arr[i].v;
        where[i] = p.second;
    }
    for(int i=1; i<=n; i++) options[i].clear();
    for(int i=0; i<(n-1)*2; i++){
        options[arr[i].s].push_back(make_pair(MX[i], i));
    }
    for(int i=1; i<=n; i++) sort(options[i].rbegin(), options[i].rend());

    for(int i=1; i<=n; i++){
        /// 수는 최대 2N개
        for(int j=0; j<(int)options[i].size(); j++){
            int p = options[i][j].second; ll v = options[i][j].first;
            int s = arr[p].s, e = arr[p].e;
            putQuery(s, e, v, 1);
            if(where[p] != -1) putQuery(s, e, v-arr[p].v, -1);
        }
    }

    numbers[0] = 0;
    for(int i=0; i<(n-1)*2; i++) numbers[i+1] = MX[i];
    sort(numbers, numbers+n*2-1);
    int L = unique(numbers, numbers+n*2-1) - numbers;
    for(int i=1; i<=n; i++) for(ll &p: inQuery[i]) p = lower_bound(numbers, numbers+L, p) - numbers;
    for(int i=1; i<=n; i++) for(ll &p: outQuery[i]) p = lower_bound(numbers, numbers+L, p) - numbers;

    for(int i=1; i<=n; i++){
        for(ll p: inQuery[i]){
//            printf("In update %d %lld\n", i, numbers[p]);
            tree.update(1, 0, L-1, p, 1, numbers[p]);
        }
        for(ll p: outQuery[i]){
//            printf("Out update %d %lld\n", i, numbers[p]);
            tree.update(1, 0, L-1, p, -1, -numbers[p]);
        }
        ans[idx[i]] = tree.query(1, 0, L-1, k);
    }

    for(int i=1; i<=n; i++){
        printf("%lld\n", ans[i]);
    }
}

Compilation message

Main.cpp: In function 'int main()':
Main.cpp:103:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  103 |     scanf("%d %d", &n, &k);
      |     ~~~~~^~~~~~~~~~~~~~~~~
Main.cpp:105:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  105 |         scanf("%d %d %lld", &arr[i*2-2].s, &arr[i*2-2].e, &arr[i*2-2].v);
      |         ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 9 ms 12116 KB Output is correct
2 Correct 6 ms 12076 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 12116 KB Output is correct
2 Correct 6 ms 12076 KB Output is correct
3 Correct 6 ms 12216 KB Output is correct
4 Correct 6 ms 12116 KB Output is correct
5 Correct 6 ms 12116 KB Output is correct
6 Correct 5 ms 12200 KB Output is correct
7 Correct 6 ms 12200 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 12116 KB Output is correct
2 Correct 6 ms 12076 KB Output is correct
3 Correct 6 ms 12216 KB Output is correct
4 Correct 6 ms 12116 KB Output is correct
5 Correct 6 ms 12116 KB Output is correct
6 Correct 5 ms 12200 KB Output is correct
7 Correct 6 ms 12200 KB Output is correct
8 Correct 9 ms 12600 KB Output is correct
9 Correct 8 ms 12588 KB Output is correct
10 Correct 8 ms 12500 KB Output is correct
11 Correct 10 ms 12600 KB Output is correct
12 Correct 12 ms 12628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 12116 KB Output is correct
2 Correct 6 ms 12076 KB Output is correct
3 Correct 6 ms 12216 KB Output is correct
4 Correct 6 ms 12116 KB Output is correct
5 Correct 6 ms 12116 KB Output is correct
6 Correct 5 ms 12200 KB Output is correct
7 Correct 6 ms 12200 KB Output is correct
8 Correct 9 ms 12600 KB Output is correct
9 Correct 8 ms 12588 KB Output is correct
10 Correct 8 ms 12500 KB Output is correct
11 Correct 10 ms 12600 KB Output is correct
12 Correct 12 ms 12628 KB Output is correct
13 Correct 12 ms 13012 KB Output is correct
14 Correct 14 ms 13120 KB Output is correct
15 Correct 12 ms 13012 KB Output is correct
16 Correct 12 ms 12988 KB Output is correct
17 Correct 13 ms 13024 KB Output is correct
18 Correct 10 ms 12884 KB Output is correct
19 Correct 12 ms 13012 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 508 ms 60172 KB Output is correct
2 Correct 435 ms 61692 KB Output is correct
3 Correct 424 ms 59008 KB Output is correct
4 Correct 503 ms 59948 KB Output is correct
5 Correct 511 ms 61740 KB Output is correct
6 Correct 527 ms 60136 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 12116 KB Output is correct
2 Correct 6 ms 12076 KB Output is correct
3 Correct 6 ms 12216 KB Output is correct
4 Correct 6 ms 12116 KB Output is correct
5 Correct 6 ms 12116 KB Output is correct
6 Correct 5 ms 12200 KB Output is correct
7 Correct 6 ms 12200 KB Output is correct
8 Correct 9 ms 12600 KB Output is correct
9 Correct 8 ms 12588 KB Output is correct
10 Correct 8 ms 12500 KB Output is correct
11 Correct 10 ms 12600 KB Output is correct
12 Correct 12 ms 12628 KB Output is correct
13 Correct 12 ms 13012 KB Output is correct
14 Correct 14 ms 13120 KB Output is correct
15 Correct 12 ms 13012 KB Output is correct
16 Correct 12 ms 12988 KB Output is correct
17 Correct 13 ms 13024 KB Output is correct
18 Correct 10 ms 12884 KB Output is correct
19 Correct 12 ms 13012 KB Output is correct
20 Correct 508 ms 60172 KB Output is correct
21 Correct 435 ms 61692 KB Output is correct
22 Correct 424 ms 59008 KB Output is correct
23 Correct 503 ms 59948 KB Output is correct
24 Correct 511 ms 61740 KB Output is correct
25 Correct 527 ms 60136 KB Output is correct
26 Correct 552 ms 60556 KB Output is correct
27 Correct 482 ms 62264 KB Output is correct
28 Correct 436 ms 63260 KB Output is correct
29 Correct 422 ms 59124 KB Output is correct
30 Correct 497 ms 60300 KB Output is correct
31 Correct 342 ms 55008 KB Output is correct
32 Correct 421 ms 62216 KB Output is correct
33 Correct 509 ms 60560 KB Output is correct
34 Correct 375 ms 59036 KB Output is correct
35 Correct 488 ms 60260 KB Output is correct
36 Correct 381 ms 64620 KB Output is correct