This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#ifndef _DEBUG
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
#include <bits/stdc++.h>
using namespace std;
#define all(x) (x).begin(), (x).end()
#define int long long
#ifndef _DEBUG
#include "biscuits.h"
#endif
#ifdef _DEBUG
long long count_tastiness(long long x, std::vector<long long> a);
#endif
struct hash_pair
{
template <class T1, class T2>
size_t operator()(const pair<T1, T2> &p) const
{
auto hash1 = hash<T1>{}(p.first);
auto hash2 = hash<T2>{}(p.second);
if (hash1 != hash2)
{
return hash1 ^ hash2;
}
// If hash1 == hash2, their XOR is zero.
return hash1;
}
};
int X;
vector<int> A;
unordered_map<pair<int, int>, int, hash_pair> mem;
int dp(int i, int carry)
{
if (carry < 0)
return 0;
if (i >= 60)
return 1;
if (mem.count({i, carry}))
return mem[{i, carry}];
int available_here = (i >= A.size() ? 0 : A[i]) + carry / 2;
return mem[{i, carry}] = dp(i + 1, available_here) + dp(i + 1, available_here - X);
}
long long count_tastiness(long long x, std::vector<long long> a)
{
X = x;
A = a;
return dp(0, 0);
}
#ifdef _DEBUG
signed main()
{
int q;
assert(scanf("%lld", &q) == 1);
vector<int> k(q);
vector<long long> x(q);
vector<vector<long long>> a(q);
vector<long long> results(q);
for (int t = 0; t < q; t++)
{
assert(scanf("%lld%lld", &k[t], &x[t]) == 2);
a[t] = vector<long long>(k[t]);
for (int i = 0; i < k[t]; i++)
{
assert(scanf("%lld", &a[t][i]) == 1);
}
}
fclose(stdin);
for (int t = 0; t < q; t++)
{
results[t] = count_tastiness(x[t], a[t]);
}
for (int t = 0; t < q; t++)
{
printf("%lld\n", results[t]);
}
fclose(stdout);
return 0;
}
#endif
Compilation message (stderr)
biscuits.cpp: In function 'long long int dp(long long int, long long int)':
biscuits.cpp:57:26: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
57 | int available_here = (i >= A.size() ? 0 : A[i]) + carry / 2;
| ~~^~~~~~~~~~~
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |