Submission #780695

# Submission time Handle Problem Language Result Execution time Memory
780695 2023-07-12T11:48:35 Z Sami_Massah Sumtree (INOI20_sumtree) C++17
100 / 100
2059 ms 290284 KB
#include <bits/stdc++.h>
using namespace std;


const int maxn = 5e5 + 12, maxk = 2e5 + 12, lg = 18, mod = 1e9 + 7;
int n, bs, tz, tms, qsum, h[maxk], col[maxk],  sz[maxk], st[maxk], en[maxk],  sum1[maxk * 3], sum2[maxk * 3];
long long ans, fact[maxn], rfact[maxn];
set <pair<int, int>> Q[maxk * 3];
vector <int> conn[maxk];
bitset <maxn> marked, zero;
long long tav(long long a, long long b){
    if(b == 0)
        return 1;
    a %= mod;
    long long x = tav(a * a % mod, b / 2);
    if(b % 2)
        return x * a % mod;
    return x % mod;
}

void update_tree1(int l, int r, int u, int k, int L = 0, int R = n){
    if(r < L || R < l)
        return;
    if(l <= L && R <= r){
        sum1[u] = k;
        return;
    }
    int mid = (L + R) / 2;
    update_tree1(l, r, u * 2, k, L, mid);
    update_tree1(l, r, u * 2 + 1, k, mid + 1, R);
    sum1[u] = sum1[u * 2] + sum1[u * 2 + 1];
}
void update_tree2(int l, int r, int u, int k, int L = 0, int R = n){
    if(r < L || R < l)
        return;
    if(l <= L && R <= r){
        sum2[u] = k;
        return;
    }
    int mid = (L + R) / 2;
    update_tree2(l, r, u * 2, k, L, mid);
    update_tree2(l, r, u * 2 + 1, k, mid + 1, R);
    sum2[u] = sum2[u * 2] + sum2[u * 2 + 1];
}
int get_sum1(int l, int r, int u, int L = 0, int R = n){
    if(r < L || R < l)
        return 0;
    if(l <= L && R <= r)
        return sum1[u];
    int mid = (L + R) / 2;
    return get_sum1(l, r, u * 2, L, mid) + get_sum1(l, r, u * 2 + 1, mid + 1, R);
}
int get_sum2(int l, int r, int u, int L = 0, int R = n){
    if(r < L || R < l)
        return 0;
    if(l <= L && R <= r)
        return sum2[u];
    int mid = (L + R) / 2;
    return get_sum2(l, r, u * 2, L, mid) + get_sum2(l, r, u * 2 + 1, mid + 1, R);
}
void dfs_set(int u){
    marked[u] = 1;
    sz[u] = 1;
    st[u] = tms;
    tms += 1;

    for(int v: conn[u])
        if(!marked[v]){

            h[v] = h[u] + 1;
            dfs_set(v);
            sz[u] += sz[v];

        }
    en[u] = tms - 1;
}
void add_to_tree(int l, int r, int u, int k, int L = 0, int R = n){
    if(r < L || R < l)
        return;
    if(l <= L && R <= r){
        qsum += 1;
        Q[u].insert(make_pair(h[k], k));
        return;
    }
    int mid = (L + R) / 2;
    add_to_tree(l, r, u * 2, k, L, mid);
    add_to_tree(l, r, u * 2 + 1, k, mid + 1, R);
}
void erase_from_tree(int l, int r, int u, int k, int L = 0, int R = n){
    if(r < L || R < l)
        return;
    if(l <= L && R <= r){
        qsum -= 1;
        Q[u].erase(make_pair(h[k], k));
        return;
    }
    int mid = (L + R) / 2;
    erase_from_tree(l, r, u * 2, k, L, mid);
    erase_from_tree(l, r, u * 2 + 1, k, mid + 1, R);
}
pair<int, int> find_pd(int l, int r, int u, int L = 0, int R = n){
    if(r < L || R < l)
        return make_pair(-1, 0);
    if(l <= L && R <= r){
        if(Q[u].size() == 0)
            return make_pair(-1, 0);
        return *Q[u].rbegin();
    }
    auto x = make_pair(-1, 0);
    if(Q[u].size())
        x = *Q[u].rbegin();
    int mid = (L + R) / 2;
    return max({find_pd(l, r, u * 2, L, mid), find_pd(l, r, u * 2 + 1, mid + 1, R), x});
}
long long get_c(int a, int b){
    if(a < b)
        return 0;
    return fact[a] * (rfact[b] * rfact[a - b] % mod) % mod;

}
void add_tree(int u, int k){
    int pd = find_pd(st[u], st[u], 1).second;
 //   cout << u << ' ' << pd << endl;
   // cout << u << ' ' << pd << endl;
    col[u] = k;
    if(u != 1){
        int x = get_sum1(st[pd] + 1, en[pd], 1);
        int d = get_sum2(st[pd] + 1, en[pd], 1);

        if(zero[pd] == 0){
            x = sz[pd] - x;
            d = col[pd] - d;
            long long f = get_c(d + x - 1, x - 1);
            ans = ans * tav(f, mod - 2) % mod;
        }
    }
  //  cout << ans << endl;
    int x = get_sum1(st[u], en[u], 1);
    int d = get_sum2(st[u], en[u], 1);
    update_tree1(st[u], st[u], 1, sz[u] - x);
    update_tree2(st[u], st[u], 1, k - d);
    add_to_tree(st[u] + 1, en[u], 1, u);
   // cout << st[pd] << '-' << en[pd] << endl;
    if(k < d){
        zero[u] = 1;
        tz += 1;
    }
    else{
 //       cout << x << ' ' << sz[u] << endl;
        x = sz[u] - x;
        d = k - d;
      //  cout << x << ' ' << d << endl;
        long long f = get_c(d + x - 1, x - 1);
        ans = ans * f % mod;
    }
   // cout << ans << endl;

    if(u != 1){
        int x = get_sum1(st[pd] + 1, en[pd], 1);
        int d = get_sum2(st[pd] + 1, en[pd], 1);
        update_tree1(st[pd], st[pd], 1, sz[pd] - x);
        update_tree2(st[pd], st[pd], 1, col[pd] - d);
        if(col[pd] < d){
            tz += (1 - zero[pd]);
            zero[pd] = 1;
        }
        else{
            x = sz[pd] - x;
            d = col[pd] - d;
            tz -= zero[pd];
            zero[pd] = 0;
    //        cout << x << ' ' << d << endl;
            long long f = get_c(d + x - 1, x - 1);
            ans = ans * f % mod;
        }
    }
    //cout << ans << endl << endl;
}
void remove_tree(int u){

    int pd = find_pd(st[u], st[u], 1).second;
   // cout << u << ' ' << pd << endl;
    int x = get_sum1(st[pd] + 1, en[pd], 1);
    int d = get_sum2(st[pd] + 1, en[pd], 1);

    if(zero[pd] == 0){
        x = sz[pd] - x;
        d = col[pd] - d;
        long long f = get_c(d + x - 1, x - 1);
        ans = ans * tav(f, mod - 2) % mod;
    }

    x = get_sum1(st[u] + 1, en[u], 1);
    d = get_sum2(st[u] + 1, en[u], 1);

    update_tree1(st[u], st[u], 1, 0);
    update_tree2(st[u], st[u], 1, 0);
    erase_from_tree(st[u] + 1, en[u], 1, u);
    //cout << get_sum1(1, n, 1) << endl;
    if(col[u] < d){
        tz -= zero[u];
        zero[u] = 0;
    }
    else{
        tz -= zero[u];
        zero[u] = 0;
        x = sz[u] - x;
        d = col[u] - d;
    //    cout << d << ' ' << x << endl;
        long long f = get_c(d + x - 1, x - 1);
        ans = ans * tav(f, mod - 2) % mod;
    }
    col[u] = -1;


    x = get_sum1(st[pd] + 1, en[pd], 1);
    d = get_sum2(st[pd] + 1, en[pd], 1);

    update_tree1(st[pd], st[pd], 1, sz[pd] - x);
    update_tree2(st[pd], st[pd], 1, col[pd] - d);

    if(col[pd] < d){
        tz += (1 - zero[pd]);
        zero[pd] = 1;
    }
    else{
        tz -= (zero[pd]);
        zero[pd] = 0;
        x = sz[pd] - x;
        d = col[pd] - d;
      //  cout << d << ' ' << x << endl;
        long long f = get_c(d + x - 1, x - 1);
        ans = ans * f % mod;
    }
}
int main(){
    ios_base::sync_with_stdio(false), cin.tie(0);
    memset(col, -1, sizeof col);
    col[0] = 0;
    fact[0] = 1;
    for(int i = 1; i < maxn; i++)
        fact[i] = fact[i - 1] * i % mod;
    for(int i = 0; i < maxn; i++)
        rfact[i] = tav(fact[i], mod - 2) % mod;
    cin >> n >> bs;
    for(int i = 0; i < n - 1; i++){
        int a, b;
        cin >> a >> b;
        conn[a].push_back(b);
        conn[b].push_back(a);
    }
    cout << endl;
    dfs_set(1);

    ans = 1;
    add_tree(1, bs);
    cout << ans << "\n";
    int q;
    cin >> q;
    for(int i = 0; i < q; i++){
        int a;
        int b, c;
        cin >> a;
        if(a == 1){
            cin >> b >> c;
            add_tree(b, c);
        }
        else{
            cin >> b;
            remove_tree(b);
        }
   ///     if(qsum > 4e6)
      ///      return 0;
        if(tz)
            cout << 0 << "\n";
        else
            cout << ans << "\n";

    }





}
# Verdict Execution time Memory Grader output
1 Correct 227 ms 57580 KB Output is correct
2 Correct 269 ms 57608 KB Output is correct
3 Correct 228 ms 57512 KB Output is correct
4 Correct 225 ms 57988 KB Output is correct
5 Correct 229 ms 55324 KB Output is correct
6 Correct 129 ms 42184 KB Output is correct
7 Correct 131 ms 42004 KB Output is correct
8 Correct 128 ms 41948 KB Output is correct
9 Correct 225 ms 52788 KB Output is correct
10 Correct 273 ms 52804 KB Output is correct
11 Correct 227 ms 52896 KB Output is correct
12 Correct 224 ms 52568 KB Output is correct
13 Correct 187 ms 58252 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 138 ms 41824 KB Output is correct
2 Correct 132 ms 41792 KB Output is correct
3 Correct 128 ms 41728 KB Output is correct
4 Correct 124 ms 41832 KB Output is correct
5 Correct 127 ms 41816 KB Output is correct
6 Correct 130 ms 41992 KB Output is correct
7 Correct 132 ms 42044 KB Output is correct
8 Correct 129 ms 42004 KB Output is correct
9 Correct 133 ms 42080 KB Output is correct
10 Correct 132 ms 42196 KB Output is correct
11 Correct 138 ms 42268 KB Output is correct
12 Correct 126 ms 42108 KB Output is correct
13 Correct 133 ms 42216 KB Output is correct
14 Correct 136 ms 42208 KB Output is correct
15 Correct 140 ms 42636 KB Output is correct
16 Correct 133 ms 42152 KB Output is correct
17 Correct 135 ms 42284 KB Output is correct
18 Correct 133 ms 42244 KB Output is correct
19 Correct 135 ms 42072 KB Output is correct
20 Correct 138 ms 41936 KB Output is correct
21 Correct 130 ms 41992 KB Output is correct
22 Correct 128 ms 41948 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 261 ms 66148 KB Output is correct
2 Correct 362 ms 71512 KB Output is correct
3 Correct 261 ms 67004 KB Output is correct
4 Correct 463 ms 80828 KB Output is correct
5 Correct 1170 ms 134512 KB Output is correct
6 Correct 129 ms 42896 KB Output is correct
7 Correct 124 ms 42072 KB Output is correct
8 Correct 125 ms 42388 KB Output is correct
9 Correct 547 ms 65644 KB Output is correct
10 Correct 500 ms 63928 KB Output is correct
11 Correct 449 ms 63224 KB Output is correct
12 Correct 483 ms 64160 KB Output is correct
13 Correct 2043 ms 289956 KB Output is correct
14 Correct 2056 ms 290244 KB Output is correct
15 Correct 2047 ms 290284 KB Output is correct
16 Correct 2059 ms 290248 KB Output is correct
17 Correct 2036 ms 290112 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 788 ms 61420 KB Output is correct
2 Correct 774 ms 61360 KB Output is correct
3 Correct 806 ms 61396 KB Output is correct
4 Correct 857 ms 61624 KB Output is correct
5 Correct 778 ms 61056 KB Output is correct
6 Correct 802 ms 61628 KB Output is correct
7 Correct 681 ms 53616 KB Output is correct
8 Correct 693 ms 53872 KB Output is correct
9 Correct 836 ms 61560 KB Output is correct
10 Correct 778 ms 61588 KB Output is correct
11 Correct 815 ms 61564 KB Output is correct
12 Correct 669 ms 53832 KB Output is correct
13 Correct 509 ms 50896 KB Output is correct
14 Correct 616 ms 52164 KB Output is correct
15 Correct 622 ms 52312 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 227 ms 57580 KB Output is correct
2 Correct 269 ms 57608 KB Output is correct
3 Correct 228 ms 57512 KB Output is correct
4 Correct 225 ms 57988 KB Output is correct
5 Correct 229 ms 55324 KB Output is correct
6 Correct 129 ms 42184 KB Output is correct
7 Correct 131 ms 42004 KB Output is correct
8 Correct 128 ms 41948 KB Output is correct
9 Correct 225 ms 52788 KB Output is correct
10 Correct 273 ms 52804 KB Output is correct
11 Correct 227 ms 52896 KB Output is correct
12 Correct 224 ms 52568 KB Output is correct
13 Correct 187 ms 58252 KB Output is correct
14 Correct 138 ms 41824 KB Output is correct
15 Correct 132 ms 41792 KB Output is correct
16 Correct 128 ms 41728 KB Output is correct
17 Correct 124 ms 41832 KB Output is correct
18 Correct 127 ms 41816 KB Output is correct
19 Correct 130 ms 41992 KB Output is correct
20 Correct 132 ms 42044 KB Output is correct
21 Correct 129 ms 42004 KB Output is correct
22 Correct 133 ms 42080 KB Output is correct
23 Correct 132 ms 42196 KB Output is correct
24 Correct 138 ms 42268 KB Output is correct
25 Correct 126 ms 42108 KB Output is correct
26 Correct 133 ms 42216 KB Output is correct
27 Correct 136 ms 42208 KB Output is correct
28 Correct 140 ms 42636 KB Output is correct
29 Correct 133 ms 42152 KB Output is correct
30 Correct 135 ms 42284 KB Output is correct
31 Correct 133 ms 42244 KB Output is correct
32 Correct 135 ms 42072 KB Output is correct
33 Correct 138 ms 41936 KB Output is correct
34 Correct 130 ms 41992 KB Output is correct
35 Correct 128 ms 41948 KB Output is correct
36 Correct 261 ms 66148 KB Output is correct
37 Correct 362 ms 71512 KB Output is correct
38 Correct 261 ms 67004 KB Output is correct
39 Correct 463 ms 80828 KB Output is correct
40 Correct 1170 ms 134512 KB Output is correct
41 Correct 129 ms 42896 KB Output is correct
42 Correct 124 ms 42072 KB Output is correct
43 Correct 125 ms 42388 KB Output is correct
44 Correct 547 ms 65644 KB Output is correct
45 Correct 500 ms 63928 KB Output is correct
46 Correct 449 ms 63224 KB Output is correct
47 Correct 483 ms 64160 KB Output is correct
48 Correct 2043 ms 289956 KB Output is correct
49 Correct 2056 ms 290244 KB Output is correct
50 Correct 2047 ms 290284 KB Output is correct
51 Correct 2059 ms 290248 KB Output is correct
52 Correct 2036 ms 290112 KB Output is correct
53 Correct 788 ms 61420 KB Output is correct
54 Correct 774 ms 61360 KB Output is correct
55 Correct 806 ms 61396 KB Output is correct
56 Correct 857 ms 61624 KB Output is correct
57 Correct 778 ms 61056 KB Output is correct
58 Correct 802 ms 61628 KB Output is correct
59 Correct 681 ms 53616 KB Output is correct
60 Correct 693 ms 53872 KB Output is correct
61 Correct 836 ms 61560 KB Output is correct
62 Correct 778 ms 61588 KB Output is correct
63 Correct 815 ms 61564 KB Output is correct
64 Correct 669 ms 53832 KB Output is correct
65 Correct 509 ms 50896 KB Output is correct
66 Correct 616 ms 52164 KB Output is correct
67 Correct 622 ms 52312 KB Output is correct
68 Correct 124 ms 41712 KB Output is correct
69 Correct 121 ms 41832 KB Output is correct
70 Correct 874 ms 67704 KB Output is correct
71 Correct 995 ms 67760 KB Output is correct
72 Correct 897 ms 67812 KB Output is correct
73 Correct 899 ms 67792 KB Output is correct
74 Correct 1089 ms 68280 KB Output is correct
75 Correct 1055 ms 64692 KB Output is correct
76 Correct 826 ms 61752 KB Output is correct
77 Correct 797 ms 62416 KB Output is correct
78 Correct 863 ms 63424 KB Output is correct
79 Correct 919 ms 64848 KB Output is correct
80 Correct 1000 ms 64876 KB Output is correct
81 Correct 1078 ms 65232 KB Output is correct
82 Correct 628 ms 58192 KB Output is correct
83 Correct 646 ms 63564 KB Output is correct
84 Correct 701 ms 62928 KB Output is correct
85 Correct 667 ms 62796 KB Output is correct