Submission #780428

# Submission time Handle Problem Language Result Execution time Memory
780428 2023-07-12T08:58:11 Z binminh01 Factories (JOI14_factories) C++17
100 / 100
3879 ms 177348 KB
#pragma GCC optimize("Ofast")
#pragma GCC target("sse4")
 
#include<bits/stdc++.h>
#include "factories.h"
using namespace std;
#define ll long long
#define ull unsigned long long
#define int128 __int128_t
#define double long double
#define gcd __gcd
#define lcm(a, b) ((a)/gcd(a, b)*(b))
#define sqrt sqrtl
#define log2 log2l
#define log10 log10l
#define floor floorl
#define to_string str
#define yes cout << "YES"
#define no cout << "NO"
#define trav(i, a) for (auto &i: (a))
#define all(a) (a).begin(), (a).end()
#define rall(a) (a).rbegin(), (a).rend()
#define sz(a) (int)a.size()
#define Max(a) *max_element(all(a))
#define Min(a) *min_element(all(a))
#define Find(a, n) (find(all(a), n) - a.begin())
#define Count(a, n) count(all(a), n)
#define Upper(a, n) (upper_bound(all(a), n) - a.begin())
#define Lower(a, n) (lower_bound(all(a), n) - a.begin())
#define next_perm(a) next_permutation(all(a))
#define prev_perm(a) prev_permutation(all(a))
#define sorted(a) is_sorted(all(a))
#define sum(a) accumulate(all(a), 0)
#define sumll(a) accumulate(all(a), 0ll)
#define Sort(a) sort(all(a))
#define Reverse(a) reverse(all(a))
#define Unique(a) Sort(a), (a).resize(unique(all(a)) - a.begin())
#define pb push_back
#define eb emplace_back
#define open(s) freopen(s, "r", stdin)
#define write(s) freopen(s, "w", stdout)
#define fileopen(s) open((string(s) + ".inp").c_str()), write((string(s) + ".out").c_str());
#define For(i, a, b) for (auto i = (a); i < (b); i++)
#define Fore(i, a, b) for (auto i = (a); i >= (b); i--)
#define FOR(i, a, b) for (auto i = (a); i <= (b); i++)
#define ret(s) return void(cout << s);

const int mod = 1e9 + 7, mod2 = 998244353;
const double PI = acos(-1);
const ull npos = string::npos;
const int dx[] = {0, 0, -1, 1}, dy[] = {-1, 1, 0, 0};
using pii = pair<int, int>;
using pll = pair<ll, ll>;
mt19937 mt(chrono::system_clock::now().time_since_epoch().count());
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<ll> vll;
typedef vector<vll> vvll;
typedef vector<double> vdo;
typedef vector<vdo> vvdo;
typedef vector<string> vs;
typedef vector<pii> vpair;
typedef vector<vpair> vvpair;
typedef vector<bool> vb;
typedef vector<vb> vvb;
typedef vector<char> vc;
typedef vector<vc> vvc;
typedef priority_queue<int> pq;
typedef priority_queue<int, vi, greater<int>> pqg;
typedef priority_queue<ll> pqll;
typedef priority_queue<ll, vll, greater<ll>> pqgll;
 
ll power(ll a, ll b, int m){ll x = 1;a%=m;while (b) {if (b & 1) x = x*a % m;a = a*a % m;b>>=1;}return x;}
ll power(ll a, ll b){ll x = 1;while (b) {if (b & 1) x = x*a;a = a*a;b>>=1;}return x;}
ll ceil(ll a, ll b){return (a + b - 1)/b;}
ll to_int(const string &s){ll x = 0; for (int i = (s[0] == '-'); i < sz(s); i++) x = x*10 + s[i] - '0';return x*(s[0] == '-' ? -1: 1);}
bool is_prime(ll n) {if (n < 2) return 0;if (n < 4) return 1;if (n % 2 == 0 || n % 3 == 0) return 0;for (ll i = 5; i*i <= n; i+=6) {if(n % i == 0 || n % (i + 2) == 0) return 0;}return 1;}
bool is_square(ll n) {ll k = sqrt(n); return k*k == n;}
ll factorial(int n) {ll x = 1;for (int i = 2; i <= n; i++) x*=i;return x;}
ll factorial(int n, int m) {ll x = 1;for (ll i = 2; i <= n; i++) x = x*i % m;return x;}
bool is_power(ll n, ll k) {while (n % k == 0) n/=k;return n == 1ll;}
string str(ll n) {if (n == 0) return "0"; string s = ""; bool c = 0; if (n < 0) c = 1, n = -n; while (n) {s+=n % 10 + '0'; n/=10;} if (c) s+='-'; Reverse(s); return s;}
string repeat(const string &s, int n) {if (n < 0) return ""; string x = ""; while (n--) x+=s; return x;}
string bin(ll n) {string s = ""; while (n) {s+=(n & 1) + '0'; n>>=1;} Reverse(s); return s;}
void sieve(vector<bool> &a) {int n = a.size(); a[0] = a[1] = 0; for (int i = 4; i < n; i+=2) a[i] = 0; for (int i = 3; i*i < n; i+=2) {if (a[i]) {for (int j = i*i; j < n; j+=(i << 1)) a[j] = 0;}}}
void sieve(vector<int> &a) {int n = a.size(); for (int i = 2; i < n; i+=2) a[i] = 2; for (int i = 3; i*i < n; i+=2) {if (!a[i]) {for (int j = i; j < n; j+=(i << 1)) a[j] = i;}} for (int i = 3; i < n; i+=2) {if (!a[i]) a[i] = i;}}
void sieve(int a[], int n) {for (int i = 2; i < n; i+=2) a[i] = 2; for (int i = 3; i*i < n; i+=2) {if (!a[i]) {for (int j = i; j < n; j+=(i << 1)) a[j] = i;}} for (int i = 3; i < n; i+=2) {if (!a[i]) a[i] = i;}}
vector<pii> factorize(int n) {vector<pii> a; for (int i = 2; i*i <= n; i++) {if (n % i == 0) {int k = 0; while (n % i == 0) k++, n/=i; a.emplace_back(i, k);}} if (n > 1) a.emplace_back(n, 1); return a;}
int rand(int l, int r) {return uniform_int_distribution<int>(l, r)(mt);}
int Log2(int n) {return 31 - __builtin_clz(n);}
template<class T> void compress(vector<T> &a) {vector<T> b; for (T &i: a) b.push_back(i); sort(all(b)); b.resize(unique(all(b)) - b.begin()); for (T &i: a) i = lower_bound(all(b), i) - b.begin() + 1;}

template<class A, class B> istream& operator>>(istream& in, pair<A, B> &p) {in >> p.first >> p.second; return in;}
template<class A, class B> ostream& operator<<(ostream& out, const pair<A, B> &p) {out << p.first << ' ' << p.second; return out;}
template<class T> istream& operator>>(istream& in, vector<T> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const vector<T> &a) {for (auto &i: a) out << i << ' '; return out;}
template<class T> istream& operator>>(istream& in, vector<vector<T>> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const vector<vector<T>> &a) {for (auto &i: a) out << i << '\n'; return out;}
template<class T> istream& operator>>(istream& in, deque<T> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const deque<T> &a) {for (auto &i: a) out << i << ' '; return out;}
// istream& operator>>(istream& in, __int128_t &a) {string s; in >> s; a = 0; for (auto &i: s) a = a*10 + (i - '0'); return in;}
// ostream& operator<<(ostream& out, __int128_t a) {string s = ""; while (a > 0) {s+=(int)a % 10 + '0'; a/=10;} Reverse(s); out << s; return out;}

const int N = 5e5 + 3;
int n, ti = 0, p[N], d[N], up[20][N], in[N], out[N], tp[N];
ll dp1[N], dp2[N], w[N];
vector<pair<int, ll>> g[N], e[N];
bool ck[N];
void dfs(int u, int par) {
    in[u] = ++ti;
    trav(v,g[u]){
        if (v.first == par) continue;
        p[v.first] = u;
        d[v.first] = d[u] + 1;
        w[v.first] = w[u] + v.second;
        dfs(v.first, u);
    }
    out[u] = ti;
}
void pre() {
    For(i,0,n) up[0][i] = p[i];
    FOR(i,1,19){
        For(j,0,n){
            up[i][j] = up[i - 1][up[i - 1][j]];
        }
    }
}
int lca(int u, int v) {
    if (d[u] < d[v]) swap(u, v);
    int k = d[u] - d[v];
    Fore(i,19,0){
        if ((k >> i) & 1) u = up[i][u];
    }
    if (u == v) return u;
    Fore(i,19,0){
        if (up[i][u] != up[i][v]) {
            u = up[i][u]; v = up[i][v];
        }
    }
    return up[0][u];
}
bool anc(int u, int v) {
    return in[u] <= in[v] && out[u] >= out[v];
}
void Dfs(int u) {
    ck[u] = 1;
    dp1[u] = dp2[u] = 1e18;
    if (tp[u] == 1) dp1[u] = 0;
    if (tp[u] == 2) dp2[u] = 0;
    trav(v,e[u]) {
        if (!ck[v.first]) {
            Dfs(v.first);
            dp1[u] = min(dp1[u], dp1[v.first] + v.second);
            dp2[u] = min(dp2[u], dp2[v.first] + v.second);
        }
    }
}
void Init(int _n, int a[], int b[], int c[]) {
    n = _n;
    For(i,0,n-1){
        g[a[i]].eb(b[i], c[i]); g[b[i]].eb(a[i], c[i]);
    }
    dfs(0, -1); pre();
}
ll Query(int s, int a[], int t, int b[]) {
    vi c;
    For(i,0,s) c.pb(a[i]), tp[a[i]] = 1;
    For(i,0,t) c.pb(b[i]), tp[b[i]] = 2;
    sort(all(c), [&](int i, int j){
        return in[i] < in[j];
    });
    For(i,0,s+t-1){
        int l = lca(c[i], c[i + 1]);
        if (l != c[i] && l != c[i + 1]) c.pb(l);
    }
    sort(all(c), [&](int i, int j){
        return in[i] < in[j];
    });
    stack<int> st;
    For(i,0,sz(c)){
        while (sz(st) && !anc(st.top(), c[i])) st.pop();
        if (sz(st)) {
            e[st.top()].eb(c[i], w[c[i]] - w[st.top()]);
            e[c[i]].eb(st.top(), w[c[i]] - w[st.top()]);
        }
        st.push(c[i]);
    }
    int r = c[0];
    Dfs(r);
    ll x = 1e18;
    trav(i,c) {
        x = min(x, dp1[i] + dp2[i]);
        dp1[i] = dp2[i] = 1e18;
        e[i].clear();
        tp[i] = 0;
        ck[i] = 0;
    }
    return x;
}
# Verdict Execution time Memory Grader output
1 Correct 28 ms 24376 KB Output is correct
2 Correct 751 ms 33336 KB Output is correct
3 Correct 758 ms 33296 KB Output is correct
4 Correct 764 ms 33320 KB Output is correct
5 Correct 614 ms 33604 KB Output is correct
6 Correct 597 ms 33252 KB Output is correct
7 Correct 774 ms 33368 KB Output is correct
8 Correct 736 ms 33336 KB Output is correct
9 Correct 642 ms 33536 KB Output is correct
10 Correct 586 ms 33228 KB Output is correct
11 Correct 745 ms 33272 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 24148 KB Output is correct
2 Correct 1720 ms 137448 KB Output is correct
3 Correct 2097 ms 141660 KB Output is correct
4 Correct 1330 ms 134892 KB Output is correct
5 Correct 1986 ms 176708 KB Output is correct
6 Correct 2614 ms 143184 KB Output is correct
7 Correct 1790 ms 56372 KB Output is correct
8 Correct 1077 ms 55532 KB Output is correct
9 Correct 1275 ms 61948 KB Output is correct
10 Correct 2003 ms 57464 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 28 ms 24376 KB Output is correct
2 Correct 751 ms 33336 KB Output is correct
3 Correct 758 ms 33296 KB Output is correct
4 Correct 764 ms 33320 KB Output is correct
5 Correct 614 ms 33604 KB Output is correct
6 Correct 597 ms 33252 KB Output is correct
7 Correct 774 ms 33368 KB Output is correct
8 Correct 736 ms 33336 KB Output is correct
9 Correct 642 ms 33536 KB Output is correct
10 Correct 586 ms 33228 KB Output is correct
11 Correct 745 ms 33272 KB Output is correct
12 Correct 15 ms 24148 KB Output is correct
13 Correct 1720 ms 137448 KB Output is correct
14 Correct 2097 ms 141660 KB Output is correct
15 Correct 1330 ms 134892 KB Output is correct
16 Correct 1986 ms 176708 KB Output is correct
17 Correct 2614 ms 143184 KB Output is correct
18 Correct 1790 ms 56372 KB Output is correct
19 Correct 1077 ms 55532 KB Output is correct
20 Correct 1275 ms 61948 KB Output is correct
21 Correct 2003 ms 57464 KB Output is correct
22 Correct 3325 ms 152708 KB Output is correct
23 Correct 3244 ms 152360 KB Output is correct
24 Correct 3347 ms 156768 KB Output is correct
25 Correct 3364 ms 158996 KB Output is correct
26 Correct 3796 ms 147812 KB Output is correct
27 Correct 2749 ms 177348 KB Output is correct
28 Correct 2309 ms 145968 KB Output is correct
29 Correct 3761 ms 146220 KB Output is correct
30 Correct 3859 ms 145448 KB Output is correct
31 Correct 3879 ms 146056 KB Output is correct
32 Correct 1133 ms 63700 KB Output is correct
33 Correct 1210 ms 63816 KB Output is correct
34 Correct 1648 ms 55952 KB Output is correct
35 Correct 1656 ms 55632 KB Output is correct
36 Correct 1580 ms 56548 KB Output is correct
37 Correct 1639 ms 56312 KB Output is correct