Submission #778392

# Submission time Handle Problem Language Result Execution time Memory
778392 2023-07-10T09:07:11 Z IBory Werewolf (IOI18_werewolf) C++17
100 / 100
869 ms 187516 KB
#include "werewolf.h"
#include <bits/stdc++.h>
#define pii pair<int, int>
using namespace std;

const int SZ = 1 << 19;
int inv[SZ];

struct BIT {
    int T[SZ];
    void Update(int i, int v) {
        for (; i < SZ; i += i & -i) T[i] += v;
    }
    int Query(int L, int R) {
        int ret = 0; L--;
        for (; R; R -= R & -R) ret += T[R];
        for (; L; L -= L & -L) ret -= T[L];
        return ret;
    }
} T;

struct UFTree {
    int R[SZ], A[SZ], in[SZ], out[SZ], P[19][SZ], node, dn;
    vector<int> G[SZ];

    UFTree(int N, vector<pii>& E, int type) {
        iota(R, R + SZ, 0);
        node = N - 1;
        Construct(E, type);
        DFS(node);
    }

    int Find(int n) {
        if (n == R[n]) return n;
        return R[n] = Find(R[n]);
    }

    bool Union(int a, int b, int c) {
        R[a] = c, R[b] = c;
        return 1;
    }

    void Construct(vector<pii>& E, int type) {
        for (int i = 0; i <= node; ++i) A[i] = i;
        for (auto [a, b] : E) {
            a = Find(a), b = Find(b);
            if (a != b) {
                P[0][a] = P[0][b] = ++node;
                Union(a, b, node);
                G[node].push_back(a);
                G[node].push_back(b);
                A[node] = (type == 1 ? max(A[a], A[b]) : min(A[a], A[b]));
            }
        }

        P[0][node] = node;
        for (int n = 1; n < 19; ++n) for (int i = 0; i <= node; ++i) {
            P[n][i] = P[n - 1][P[n - 1][i]];
        }
    }

    void DFS(int cur) {
        in[cur] = ++dn;
        for (int next : G[cur]) DFS(next);
        out[cur] = dn;
    }
};

vector<int> check_validity(int N, vector<int> X, vector<int> Y, vector<int> S, vector<int> E, vector<int> L, vector<int> R) {
    int M = X.size(), Q = S.size();
    vector<pii> Eord[2];
    for (int i = 0; i < M; ++i) {
        Eord[0].emplace_back(X[i], Y[i]);
        Eord[1].emplace_back(X[i], Y[i]);
    }

    sort(Eord[0].begin(), Eord[0].end(), [&](pii& a, pii& b) {
        return max(a.first, a.second) < max(b.first, b.second);
    });
    sort(Eord[1].begin(), Eord[1].end(), [&](pii& a, pii& b) {
        return min(a.first, a.second) > min(b.first, b.second);
    });

    UFTree T1(N, Eord[1], 0);
    UFTree T2(N, Eord[0], 1);
    vector<int> ans(Q);
    vector<pair<pii, pair<pii, int>>> Qord;
    for (int i = 0; i < Q; ++i) {
        int s = S[i], e = E[i];
        for (int n = 18; n >= 0; --n) {
            if (L[i] <= T1.A[T1.P[n][s]]) s = T1.P[n][s];
            if (T2.A[T2.P[n][e]] <= R[i]) {
                e = T2.P[n][e];
            }
        }
        pii r = {T2.in[e], T2.out[e]};
        Qord.emplace_back(pii{T1.in[s], -1}, pair<pii, int>{r, i});
        Qord.emplace_back(pii{T1.out[s], 1}, pair<pii, int>{r, i});
    }
    pii dummy = {0, 0};
    for (int i = 0; i < N; ++i) Qord.emplace_back(pii{T1.in[i], 0}, pair<pii, int>{dummy, Q});

    sort(Qord.begin(), Qord.end());
    for (int i = 0; i < N; ++i) inv[T1.in[i]] = T2.in[i];
    for (auto [p1, p2] : Qord) {
        auto [x, type] = p1;
        auto [p3, qn] = p2;
        auto [l, r] = p3;
        if (type == -1) ans[qn] -= T.Query(l, r);
        else if (type == 0) T.Update(inv[x], 1);
        else ans[qn] += T.Query(l, r);
    }
    
    for (int& n : ans) n = n > 0;
    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 45 ms 119372 KB Output is correct
2 Correct 44 ms 119372 KB Output is correct
3 Correct 45 ms 119368 KB Output is correct
4 Correct 45 ms 119248 KB Output is correct
5 Correct 50 ms 119440 KB Output is correct
6 Correct 44 ms 119380 KB Output is correct
7 Correct 45 ms 119368 KB Output is correct
8 Correct 44 ms 119268 KB Output is correct
9 Correct 45 ms 119380 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 45 ms 119372 KB Output is correct
2 Correct 44 ms 119372 KB Output is correct
3 Correct 45 ms 119368 KB Output is correct
4 Correct 45 ms 119248 KB Output is correct
5 Correct 50 ms 119440 KB Output is correct
6 Correct 44 ms 119380 KB Output is correct
7 Correct 45 ms 119368 KB Output is correct
8 Correct 44 ms 119268 KB Output is correct
9 Correct 45 ms 119380 KB Output is correct
10 Correct 52 ms 120156 KB Output is correct
11 Correct 50 ms 120108 KB Output is correct
12 Correct 50 ms 120148 KB Output is correct
13 Correct 55 ms 120228 KB Output is correct
14 Correct 50 ms 120212 KB Output is correct
15 Correct 51 ms 120228 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 791 ms 166980 KB Output is correct
2 Correct 683 ms 177880 KB Output is correct
3 Correct 672 ms 176312 KB Output is correct
4 Correct 707 ms 175548 KB Output is correct
5 Correct 690 ms 175428 KB Output is correct
6 Correct 734 ms 175356 KB Output is correct
7 Correct 781 ms 175340 KB Output is correct
8 Correct 577 ms 177940 KB Output is correct
9 Correct 447 ms 176280 KB Output is correct
10 Correct 404 ms 175456 KB Output is correct
11 Correct 477 ms 175452 KB Output is correct
12 Correct 477 ms 175464 KB Output is correct
13 Correct 809 ms 177928 KB Output is correct
14 Correct 724 ms 177912 KB Output is correct
15 Correct 717 ms 178000 KB Output is correct
16 Correct 703 ms 177968 KB Output is correct
17 Correct 769 ms 175424 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 45 ms 119372 KB Output is correct
2 Correct 44 ms 119372 KB Output is correct
3 Correct 45 ms 119368 KB Output is correct
4 Correct 45 ms 119248 KB Output is correct
5 Correct 50 ms 119440 KB Output is correct
6 Correct 44 ms 119380 KB Output is correct
7 Correct 45 ms 119368 KB Output is correct
8 Correct 44 ms 119268 KB Output is correct
9 Correct 45 ms 119380 KB Output is correct
10 Correct 52 ms 120156 KB Output is correct
11 Correct 50 ms 120108 KB Output is correct
12 Correct 50 ms 120148 KB Output is correct
13 Correct 55 ms 120228 KB Output is correct
14 Correct 50 ms 120212 KB Output is correct
15 Correct 51 ms 120228 KB Output is correct
16 Correct 791 ms 166980 KB Output is correct
17 Correct 683 ms 177880 KB Output is correct
18 Correct 672 ms 176312 KB Output is correct
19 Correct 707 ms 175548 KB Output is correct
20 Correct 690 ms 175428 KB Output is correct
21 Correct 734 ms 175356 KB Output is correct
22 Correct 781 ms 175340 KB Output is correct
23 Correct 577 ms 177940 KB Output is correct
24 Correct 447 ms 176280 KB Output is correct
25 Correct 404 ms 175456 KB Output is correct
26 Correct 477 ms 175452 KB Output is correct
27 Correct 477 ms 175464 KB Output is correct
28 Correct 809 ms 177928 KB Output is correct
29 Correct 724 ms 177912 KB Output is correct
30 Correct 717 ms 178000 KB Output is correct
31 Correct 703 ms 177968 KB Output is correct
32 Correct 769 ms 175424 KB Output is correct
33 Correct 869 ms 176032 KB Output is correct
34 Correct 363 ms 163424 KB Output is correct
35 Correct 813 ms 178548 KB Output is correct
36 Correct 855 ms 175964 KB Output is correct
37 Correct 865 ms 177604 KB Output is correct
38 Correct 860 ms 176412 KB Output is correct
39 Correct 831 ms 180624 KB Output is correct
40 Correct 736 ms 187256 KB Output is correct
41 Correct 523 ms 177172 KB Output is correct
42 Correct 504 ms 175992 KB Output is correct
43 Correct 622 ms 184076 KB Output is correct
44 Correct 620 ms 177672 KB Output is correct
45 Correct 479 ms 180988 KB Output is correct
46 Correct 493 ms 180688 KB Output is correct
47 Correct 698 ms 178212 KB Output is correct
48 Correct 696 ms 178140 KB Output is correct
49 Correct 668 ms 178176 KB Output is correct
50 Correct 664 ms 177996 KB Output is correct
51 Correct 541 ms 187496 KB Output is correct
52 Correct 574 ms 187516 KB Output is correct