Submission #777671

# Submission time Handle Problem Language Result Execution time Memory
777671 2023-07-09T12:45:41 Z Sam_a17 New Home (APIO18_new_home) C++17
22 / 100
5000 ms 403380 KB
#define _CRT_SECURE_NO_WARNINGS
#include <bits/stdc++.h>
//#include "temp.cpp"
#include <cstdio>
using namespace std;
 
#ifndef ONLINE_JUDGE
#define dbg(x) cerr << #x <<" "; print(x); cerr << endl;
#else
#define dbg(x)
#endif
 
#define sz(x) (int)x.size()
#define len(x) (int)x.length()
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define clr(x) (x).clear()
#define uniq(x) x.resize(unique(all(x)) - x.begin());
#define blt __builtin_popcount
 
#define pb push_back
#define popf pop_front
#define popb pop_back
#define ld long double
#define ll long long
 
void print(long long t) {cerr << t;}
void print(int t) {cerr << t;}
void print(string t) {cerr << t;}
void print(char t) {cerr << t;}
void print(double t) {cerr << t;}
void print(long double t) {cerr << t;}
void print(unsigned long long t) {cerr << t;}
 
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
#define nl '\n'
 
// Indexed Set  
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
 
template <class T, class V> void print(pair <T, V> p);
template <class T> void print(vector <T> v);
template <class T> void print(set <T> v);
template <class T, class V> void print(map <T, V> v);
template <class T> void print(multiset <T> v);
template <class T, class V> void print(T v[],V n) {cerr << "["; for(int i = 0; i < n; i++) {print(v[i]); cerr << " "; } cerr << "]";}
template <class T, class V> void print(pair <T, V> p) {cerr << "{"; print(p.first); cerr << ","; print(p.second); cerr << "}";}
template <class T> void print(vector <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
// template <class T> void print(vector <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(set <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(multiset <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(Tree <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T, class V> void print(map <T, V> v) {cerr << "[ "; for (auto i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(deque <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
 
 
// for random generations
mt19937 myrand(chrono::steady_clock::now().time_since_epoch().count());
// mt19937 myrand(131);
 
// for grid problems
int dx[8] = {-1,0,1,0,1,-1,1,-1};
int dy[8] = {0,1,0,-1,1,1,-1,-1};
 
// lowest / (1 << 17) >= 1e5 / (1 << 18) >= 2e5 / (1 << 21) >= 1e6
void fastIO() {
  ios_base::sync_with_stdio(false);
  cin.tie(nullptr); cout.tie(nullptr);
}
// file in/out
void setIO(string str = "") {
  fastIO();
 
  // if(str == "input") {
    // freopen("input.txt", "r", stdin);
    // freopen("output.txt", "w", stdout);
  // } else if(str != "") {
    // freopen((str + ".in").c_str(), "r", stdin);
    // freopen((str + ".out").c_str(), "w", stdout);
  // }
}
 
const int N = 2e6 + 10 + 4e5 + 10, maxM = 3e5 + 10, inf = 1e8, infi = 2e9 + 10;
vector<pair<pair<int, int>, int>> to_add[N];
int n, k, q;
bool oki = 1;
 
struct node {
  int x, t, a, b;
};
 
vector<node> cand;

struct segTreeMax {  // Range Queries
  vector<int> mt[N];
  vector<int> mTree;
  int size, sub;

  void init(ll n) {
    size = 1;
    while(size < n)  {
      size *= 2;
    }
    mTree.assign(2 * size - 1, 0);
  }

  void upd(int u, ll v, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      x -= sub;
      if(v >= 0) {
        mt[x].push_back(v);
        sort(all(mt[x]));
      } else {
        vector<int> new_v;
        int ok = 0;
        for(auto i: mt[x]) {
          if(i == -v && !ok) {
            ok = 1;
          } else {
            new_v.push_back(i);
          }
        }
        new_v.swap(mt[x]);
      }

      if(!mt[x].empty()) {
        mTree[x + sub] = mt[x].back();
      } else {
        mTree[x + sub] = -1;
      }
      return;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      upd(u, v, 2 * x + 1, lx, m);
    }else {
      upd(u, v, 2 * x + 2, m, rx);
    }
    mTree[x] = max(mTree[2 * x + 1], mTree[2 * x + 2]);
  }

  void upd(int u, ll v) {
    upd(u, v, 0, 0, size);
  }

  int gt(int u, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      sub = x;
      return x;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      return gt(u, 2 * x + 1, lx, m);
    }else {
      return gt(u, 2 * x + 2, m, rx);
    }
  }

  int gt(int u) {
    return gt(u, 0, 0, size);
  }

  int qry(int l, int r, int x, int lx, int rx) { // range queries
    if(l >= rx || lx >= r) {
      return -1;
    }

    if(lx >= l && r >= rx) {
      return mTree[x];
    }

    int m = (rx + lx) / 2;
    int s1 = qry(l, r, 2 * x + 1, lx, m);
    int s2 = qry(l, r, 2 * x + 2, m, rx);
    return max(s1, s2);
  }

  int qry(int l, int r) {
    return qry(l, r, 0,0,size);
  }
};

struct segTreeMin {  // Range Queries
  multiset<int> mt[N];
  vector<int> mTree;
  int size;
  int sub;

  void init(ll n) {
    size = 1;
    while(size < n)  {
      size *= 2;
    }
    mTree.assign(2 * size - 1, INT32_MAX);
  }

  int ind(int xx) {
    if(xx >= sub) {
      return xx - sub;
    } else {
      return xx;
    }
  }

  void upd(int u, ll v, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      x -= sub;
      if(v >= 0) {
        mt[x].insert(v);
      } else {
        assert(mt[x].find(-v) != mt[x].end());
        mt[x].erase(mt[x].find(-v));
      }

      if(!mt[x].empty()) {
        mTree[x + sub] = *mt[x].begin();
      } else {
        mTree[x + sub] = INT32_MAX;
      }
      return;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      upd(u, v, 2 * x + 1, lx, m);
    }else {
      upd(u, v, 2 * x + 2, m, rx);
    }
    mTree[x] = min(mTree[2 * x + 1], mTree[2 * x + 2]);
  }

  void upd(int u, ll v) {
    upd(u, v, 0, 0, size);
  }

  int gt(int u, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      sub = x;
      return x;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      return gt(u, 2 * x + 1, lx, m);
    }else {
      return gt(u, 2 * x + 2, m, rx);
    }
  }

  int gt(int u) {
    return gt(u, 0, 0, size);
  }

  int qry(int l, int r, int x, int lx, int rx) { // range queries
    if(l >= rx || lx >= r) {
      return INT32_MAX;
    }

    if(lx >= l && r >= rx) {
      return mTree[x];
    }

    int m = (rx + lx) / 2;
    int s1 = qry(l, r, 2 * x + 1, lx, m);
    int s2 = qry(l, r, 2 * x + 2, m, rx);
    return min(s1, s2);
  }

  int qry(int l, int r) {
    return qry(l, r, 0,0,size);
  }
};

segTreeMax rs;
segTreeMin ls;

vector<int> compress_times, compress_locations;
map<int, int> mx_col[maxM];
int pat[maxM];

int get(int val) {
  return lower_bound(all(compress_locations), val) - compress_locations.begin();
}

void add_interval(int type, int l, int r) {
  int mid = (l + r + 1) / 2;
  l = get(l);
  r = get(r);
  int midone = get(mid - 1);
  mid = midone + 1;
  
  if(mid <= r) {
    rs.upd(mid, r);
  }
  if(l < mid) {
    ls.upd(midone, l);
  }
}

void del_interval(int type, int l, int r) {
  int mid = (l + r + 1) / 2;
  
  l = get(l);
  r = get(r);
  int midone = get(mid - 1);
  mid = midone + 1;

  if(mid <= r) rs.upd(mid, -r);
  if(l < mid) ls.upd(midone, -l);
}

void solve_() {
  cin >> n >> k >> q;
 
  for(int i = 1; i <= n; i++) {
    int x, t, a, b; 
    cin >> x >> t >> a >> b;

    if(a != 1) {
      oki = 1;
    }
    
    compress_times.push_back(a);
    compress_times.push_back(b + 1);

    compress_locations.push_back(x);

    cand.push_back({x, t, a, b});
  }

  vector<pair<int, int>> queries;
  for(int i = 1; i <= q; i++) {
    int l, y; cin >> l >> y;
    compress_locations.push_back(l);
    compress_times.push_back(y);
    queries.emplace_back(l, y);
  }

  compress_locations.push_back(-infi);
  compress_locations.push_back(infi);
  
  sort(all(compress_times));
  uniq(compress_times);


  for(auto &i: cand) {
    i.a = lower_bound(all(compress_times), i.a) - compress_times.begin();
    i.b = lower_bound(all(compress_times), i.b + 1) - compress_times.begin();

    to_add[i.b].push_back({{i.x, i.t}, 2});
    to_add[i.a].push_back({{i.x, i.t}, 1});
  } 

  {
    vector<node> vi;
    cand.swap(vi);
  }

  for(int i = 1; i <= k; i++) {
    mx_col[i][-infi] = 1;
    mx_col[i][infi] = 1;
  }

  for(int i = 0; i < sz(compress_times); i++) {
    for(auto cc: to_add[i]) {
      if(cc.second == 1) { 
        auto j = cc.first;
        if(mx_col[j.second].find(j.first) != mx_col[j.second].end()) {
          mx_col[j.second][j.first]++;
          continue;
        }

        mx_col[j.second][j.first] = 1;
        auto it = mx_col[j.second].find(j.first);
        auto it_prev = prev(it), it_next = next(it);

        int mid1 = (it_next->first + j.first + 1) / 2;
        int mid2 = (it_prev->first + j.first + 1) / 2;

        compress_locations.push_back(mid1);
        compress_locations.push_back(mid1 - 1);

        compress_locations.push_back(mid2);
        compress_locations.push_back(mid2 - 1);
      } else if(cc.second == 2) {
        auto j = cc.first;
        mx_col[j.second][j.first]--;
        if(mx_col[j.second][j.first] == 0) {

          auto it = mx_col[j.second].find(j.first);
          auto it_prev = prev(it), it_next = next(it);

          int mid1 = (it_next->first + it_prev->first + 1) / 2;
          
          compress_locations.push_back(mid1);
          compress_locations.push_back(mid1 - 1);
  
          mx_col[j.second].erase(j.first);
        }
      } 
    }
  }

  int it = 1;
  for(auto &i: queries) {
    i.second = lower_bound(all(compress_times), i.second) - compress_times.begin();
    to_add[i.second].push_back({{i.first, it}, 0});
    it++;
  }

  sort(all(compress_locations));
  uniq(compress_locations);
  ls.init(sz(compress_locations) + 2);
  rs.init(sz(compress_locations) + 2);
  rs.gt(0);
  ls.gt(0);

  for(int i = 1; i <= k; i++) {
    mx_col[i].clear();
    
    mx_col[i][-infi] = 1;
    mx_col[i][infi] = 1;
  }

  vector<bool> empty(k + 1, true);
  int emp = k;
  for(int i = 0; i < sz(compress_times); i++) {
    for(auto cc: to_add[i]) {
      if(cc.second == 1) { 
        auto j = cc.first;
        if(mx_col[j.second].find(j.first) != mx_col[j.second].end()) {
          mx_col[j.second][j.first]++;
          continue;
        }

        mx_col[j.second][j.first] = 1;
        if(sz(mx_col[j.second]) == 3) {
          empty[j.second] = false;
          emp--;
        }

        auto it = mx_col[j.second].find(j.first);
        auto it_prev = prev(it), it_next = next(it);

        int mid1 = (it_next->first + j.first + 1) / 2;
        int mid2 = (it_prev->first + j.first + 1) / 2;

        add_interval(j.second, it_prev->first, j.first);
        add_interval(j.second, j.first, it_next->first);

        if(it_prev->first != -infi || it_next->first != infi) {
          del_interval(j.second, it_prev->first, it_next->first);
        }
      } else if(cc.second == 2) {
        auto j = cc.first;
        mx_col[j.second][j.first]--;
        if(mx_col[j.second][j.first] == 0) {

          auto it = mx_col[j.second].find(j.first);
          if(sz(mx_col[j.second]) == 3) {
            empty[j.second] = true;
            emp++;
          }

          auto it_prev = prev(it), it_next = next(it);
          del_interval(j.second, it_prev->first, j.first);
          del_interval(j.second, j.first, it_next->first);

          if(it_prev->first != -infi || it_next->first != infi) {
            add_interval(j.second, it_prev->first, it_next->first);
          }

          mx_col[j.second].erase(j.first);
        }
      } else {
        auto j = cc.first;
        if(emp) {
          pat[j.second] = -1;
        } else {
          int cur = lower_bound(all(compress_locations), j.first) - compress_locations.begin();
          int li = ls.qry(cur, sz(compress_locations) + 1);
          int ri = rs.qry(0, cur + 1);

          if(li <= cur) {
            pat[j.second] = max(pat[j.second], j.first - compress_locations[li]);
          }

          if(ri >= cur) {
            pat[j.second] = max(pat[j.second], compress_locations[ri] - j.first);
          }
        }
      }
    }
  }

  for(int i = 1; i <= q; i++) {
    cout << pat[i] << '\n';
  }
 }
 
int main() {
  setIO();
 
  auto solve = [&](int test_case)-> void {
    for(int i = 1; i <= test_case; i++) {
      solve_();
    }
  };
 
  int test_cases = 1;
  // cin >> test_cases;
  solve(test_cases);
 
  return 0;
}

Compilation message

new_home.cpp: In function 'void solve_()':
new_home.cpp:448:13: warning: unused variable 'mid1' [-Wunused-variable]
  448 |         int mid1 = (it_next->first + j.first + 1) / 2;
      |             ^~~~
new_home.cpp:449:13: warning: unused variable 'mid2' [-Wunused-variable]
  449 |         int mid2 = (it_prev->first + j.first + 1) / 2;
      |             ^~~~
# Verdict Execution time Memory Grader output
1 Correct 100 ms 239852 KB Output is correct
2 Correct 98 ms 239740 KB Output is correct
3 Correct 110 ms 239840 KB Output is correct
4 Correct 103 ms 239860 KB Output is correct
5 Correct 104 ms 240088 KB Output is correct
6 Correct 105 ms 239920 KB Output is correct
7 Correct 100 ms 239948 KB Output is correct
8 Correct 100 ms 239936 KB Output is correct
9 Correct 101 ms 240052 KB Output is correct
10 Correct 105 ms 240040 KB Output is correct
11 Correct 102 ms 239972 KB Output is correct
12 Correct 99 ms 239888 KB Output is correct
13 Correct 98 ms 239944 KB Output is correct
14 Correct 99 ms 239952 KB Output is correct
15 Correct 100 ms 239976 KB Output is correct
16 Correct 100 ms 240056 KB Output is correct
17 Correct 100 ms 239960 KB Output is correct
18 Correct 101 ms 240056 KB Output is correct
19 Correct 100 ms 240024 KB Output is correct
20 Correct 104 ms 240112 KB Output is correct
21 Correct 99 ms 240004 KB Output is correct
22 Correct 99 ms 240008 KB Output is correct
23 Correct 100 ms 240000 KB Output is correct
24 Correct 100 ms 240028 KB Output is correct
25 Correct 108 ms 240056 KB Output is correct
26 Correct 102 ms 239988 KB Output is correct
27 Correct 100 ms 239884 KB Output is correct
28 Correct 101 ms 239980 KB Output is correct
29 Correct 100 ms 239972 KB Output is correct
30 Correct 100 ms 239928 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 100 ms 239852 KB Output is correct
2 Correct 98 ms 239740 KB Output is correct
3 Correct 110 ms 239840 KB Output is correct
4 Correct 103 ms 239860 KB Output is correct
5 Correct 104 ms 240088 KB Output is correct
6 Correct 105 ms 239920 KB Output is correct
7 Correct 100 ms 239948 KB Output is correct
8 Correct 100 ms 239936 KB Output is correct
9 Correct 101 ms 240052 KB Output is correct
10 Correct 105 ms 240040 KB Output is correct
11 Correct 102 ms 239972 KB Output is correct
12 Correct 99 ms 239888 KB Output is correct
13 Correct 98 ms 239944 KB Output is correct
14 Correct 99 ms 239952 KB Output is correct
15 Correct 100 ms 239976 KB Output is correct
16 Correct 100 ms 240056 KB Output is correct
17 Correct 100 ms 239960 KB Output is correct
18 Correct 101 ms 240056 KB Output is correct
19 Correct 100 ms 240024 KB Output is correct
20 Correct 104 ms 240112 KB Output is correct
21 Correct 99 ms 240004 KB Output is correct
22 Correct 99 ms 240008 KB Output is correct
23 Correct 100 ms 240000 KB Output is correct
24 Correct 100 ms 240028 KB Output is correct
25 Correct 108 ms 240056 KB Output is correct
26 Correct 102 ms 239988 KB Output is correct
27 Correct 100 ms 239884 KB Output is correct
28 Correct 101 ms 239980 KB Output is correct
29 Correct 100 ms 239972 KB Output is correct
30 Correct 100 ms 239928 KB Output is correct
31 Correct 814 ms 266744 KB Output is correct
32 Correct 144 ms 245396 KB Output is correct
33 Correct 716 ms 261640 KB Output is correct
34 Correct 801 ms 262252 KB Output is correct
35 Correct 796 ms 266304 KB Output is correct
36 Correct 800 ms 266056 KB Output is correct
37 Correct 583 ms 259240 KB Output is correct
38 Correct 582 ms 259088 KB Output is correct
39 Correct 507 ms 258844 KB Output is correct
40 Correct 508 ms 258496 KB Output is correct
41 Correct 644 ms 263296 KB Output is correct
42 Correct 748 ms 263108 KB Output is correct
43 Correct 142 ms 246336 KB Output is correct
44 Correct 633 ms 263388 KB Output is correct
45 Correct 631 ms 263384 KB Output is correct
46 Correct 648 ms 263464 KB Output is correct
47 Correct 450 ms 262896 KB Output is correct
48 Correct 402 ms 262632 KB Output is correct
49 Correct 451 ms 262880 KB Output is correct
50 Correct 466 ms 263280 KB Output is correct
51 Correct 456 ms 262880 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4347 ms 395780 KB Output is correct
2 Correct 4597 ms 377504 KB Output is correct
3 Correct 2961 ms 397504 KB Output is correct
4 Correct 4147 ms 402788 KB Output is correct
5 Correct 4285 ms 376952 KB Output is correct
6 Correct 4496 ms 377396 KB Output is correct
7 Correct 2779 ms 397432 KB Output is correct
8 Correct 3147 ms 403380 KB Output is correct
9 Correct 3374 ms 389080 KB Output is correct
10 Correct 3770 ms 378308 KB Output is correct
11 Correct 2260 ms 376688 KB Output is correct
12 Correct 2419 ms 377884 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 5059 ms 388048 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 100 ms 239852 KB Output is correct
2 Correct 98 ms 239740 KB Output is correct
3 Correct 110 ms 239840 KB Output is correct
4 Correct 103 ms 239860 KB Output is correct
5 Correct 104 ms 240088 KB Output is correct
6 Correct 105 ms 239920 KB Output is correct
7 Correct 100 ms 239948 KB Output is correct
8 Correct 100 ms 239936 KB Output is correct
9 Correct 101 ms 240052 KB Output is correct
10 Correct 105 ms 240040 KB Output is correct
11 Correct 102 ms 239972 KB Output is correct
12 Correct 99 ms 239888 KB Output is correct
13 Correct 98 ms 239944 KB Output is correct
14 Correct 99 ms 239952 KB Output is correct
15 Correct 100 ms 239976 KB Output is correct
16 Correct 100 ms 240056 KB Output is correct
17 Correct 100 ms 239960 KB Output is correct
18 Correct 101 ms 240056 KB Output is correct
19 Correct 100 ms 240024 KB Output is correct
20 Correct 104 ms 240112 KB Output is correct
21 Correct 99 ms 240004 KB Output is correct
22 Correct 99 ms 240008 KB Output is correct
23 Correct 100 ms 240000 KB Output is correct
24 Correct 100 ms 240028 KB Output is correct
25 Correct 108 ms 240056 KB Output is correct
26 Correct 102 ms 239988 KB Output is correct
27 Correct 100 ms 239884 KB Output is correct
28 Correct 101 ms 239980 KB Output is correct
29 Correct 100 ms 239972 KB Output is correct
30 Correct 100 ms 239928 KB Output is correct
31 Correct 814 ms 266744 KB Output is correct
32 Correct 144 ms 245396 KB Output is correct
33 Correct 716 ms 261640 KB Output is correct
34 Correct 801 ms 262252 KB Output is correct
35 Correct 796 ms 266304 KB Output is correct
36 Correct 800 ms 266056 KB Output is correct
37 Correct 583 ms 259240 KB Output is correct
38 Correct 582 ms 259088 KB Output is correct
39 Correct 507 ms 258844 KB Output is correct
40 Correct 508 ms 258496 KB Output is correct
41 Correct 644 ms 263296 KB Output is correct
42 Correct 748 ms 263108 KB Output is correct
43 Correct 142 ms 246336 KB Output is correct
44 Correct 633 ms 263388 KB Output is correct
45 Correct 631 ms 263384 KB Output is correct
46 Correct 648 ms 263464 KB Output is correct
47 Correct 450 ms 262896 KB Output is correct
48 Correct 402 ms 262632 KB Output is correct
49 Correct 451 ms 262880 KB Output is correct
50 Correct 466 ms 263280 KB Output is correct
51 Correct 456 ms 262880 KB Output is correct
52 Correct 599 ms 276360 KB Output is correct
53 Correct 577 ms 271268 KB Output is correct
54 Correct 729 ms 270808 KB Output is correct
55 Correct 635 ms 267956 KB Output is correct
56 Correct 598 ms 270220 KB Output is correct
57 Correct 656 ms 264992 KB Output is correct
58 Correct 617 ms 267324 KB Output is correct
59 Correct 623 ms 269536 KB Output is correct
60 Correct 630 ms 264460 KB Output is correct
61 Execution timed out 5067 ms 255284 KB Time limit exceeded
62 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 100 ms 239852 KB Output is correct
2 Correct 98 ms 239740 KB Output is correct
3 Correct 110 ms 239840 KB Output is correct
4 Correct 103 ms 239860 KB Output is correct
5 Correct 104 ms 240088 KB Output is correct
6 Correct 105 ms 239920 KB Output is correct
7 Correct 100 ms 239948 KB Output is correct
8 Correct 100 ms 239936 KB Output is correct
9 Correct 101 ms 240052 KB Output is correct
10 Correct 105 ms 240040 KB Output is correct
11 Correct 102 ms 239972 KB Output is correct
12 Correct 99 ms 239888 KB Output is correct
13 Correct 98 ms 239944 KB Output is correct
14 Correct 99 ms 239952 KB Output is correct
15 Correct 100 ms 239976 KB Output is correct
16 Correct 100 ms 240056 KB Output is correct
17 Correct 100 ms 239960 KB Output is correct
18 Correct 101 ms 240056 KB Output is correct
19 Correct 100 ms 240024 KB Output is correct
20 Correct 104 ms 240112 KB Output is correct
21 Correct 99 ms 240004 KB Output is correct
22 Correct 99 ms 240008 KB Output is correct
23 Correct 100 ms 240000 KB Output is correct
24 Correct 100 ms 240028 KB Output is correct
25 Correct 108 ms 240056 KB Output is correct
26 Correct 102 ms 239988 KB Output is correct
27 Correct 100 ms 239884 KB Output is correct
28 Correct 101 ms 239980 KB Output is correct
29 Correct 100 ms 239972 KB Output is correct
30 Correct 100 ms 239928 KB Output is correct
31 Correct 814 ms 266744 KB Output is correct
32 Correct 144 ms 245396 KB Output is correct
33 Correct 716 ms 261640 KB Output is correct
34 Correct 801 ms 262252 KB Output is correct
35 Correct 796 ms 266304 KB Output is correct
36 Correct 800 ms 266056 KB Output is correct
37 Correct 583 ms 259240 KB Output is correct
38 Correct 582 ms 259088 KB Output is correct
39 Correct 507 ms 258844 KB Output is correct
40 Correct 508 ms 258496 KB Output is correct
41 Correct 644 ms 263296 KB Output is correct
42 Correct 748 ms 263108 KB Output is correct
43 Correct 142 ms 246336 KB Output is correct
44 Correct 633 ms 263388 KB Output is correct
45 Correct 631 ms 263384 KB Output is correct
46 Correct 648 ms 263464 KB Output is correct
47 Correct 450 ms 262896 KB Output is correct
48 Correct 402 ms 262632 KB Output is correct
49 Correct 451 ms 262880 KB Output is correct
50 Correct 466 ms 263280 KB Output is correct
51 Correct 456 ms 262880 KB Output is correct
52 Correct 4347 ms 395780 KB Output is correct
53 Correct 4597 ms 377504 KB Output is correct
54 Correct 2961 ms 397504 KB Output is correct
55 Correct 4147 ms 402788 KB Output is correct
56 Correct 4285 ms 376952 KB Output is correct
57 Correct 4496 ms 377396 KB Output is correct
58 Correct 2779 ms 397432 KB Output is correct
59 Correct 3147 ms 403380 KB Output is correct
60 Correct 3374 ms 389080 KB Output is correct
61 Correct 3770 ms 378308 KB Output is correct
62 Correct 2260 ms 376688 KB Output is correct
63 Correct 2419 ms 377884 KB Output is correct
64 Execution timed out 5059 ms 388048 KB Time limit exceeded
65 Halted 0 ms 0 KB -