Submission #777662

# Submission time Handle Problem Language Result Execution time Memory
777662 2023-07-09T12:31:18 Z Sam_a17 New Home (APIO18_new_home) C++17
57 / 100
5000 ms 472360 KB
#define _CRT_SECURE_NO_WARNINGS
#include <bits/stdc++.h>
//#include "temp.cpp"
#include <cstdio>
using namespace std;
 
#ifndef ONLINE_JUDGE
#define dbg(x) cerr << #x <<" "; print(x); cerr << endl;
#else
#define dbg(x)
#endif
 
#define sz(x) (int)x.size()
#define len(x) (int)x.length()
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define clr(x) (x).clear()
#define uniq(x) x.resize(unique(all(x)) - x.begin());
#define blt __builtin_popcount
 
#define pb push_back
#define popf pop_front
#define popb pop_back
#define ld long double
#define ll long long
 
void print(long long t) {cerr << t;}
void print(int t) {cerr << t;}
void print(string t) {cerr << t;}
void print(char t) {cerr << t;}
void print(double t) {cerr << t;}
void print(long double t) {cerr << t;}
void print(unsigned long long t) {cerr << t;}
 
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
#define nl '\n'
 
// Indexed Set  
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
 
template <class T, class V> void print(pair <T, V> p);
template <class T> void print(vector <T> v);
template <class T> void print(set <T> v);
template <class T, class V> void print(map <T, V> v);
template <class T> void print(multiset <T> v);
template <class T, class V> void print(T v[],V n) {cerr << "["; for(int i = 0; i < n; i++) {print(v[i]); cerr << " "; } cerr << "]";}
template <class T, class V> void print(pair <T, V> p) {cerr << "{"; print(p.first); cerr << ","; print(p.second); cerr << "}";}
template <class T> void print(vector <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
// template <class T> void print(vector <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(set <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(multiset <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(Tree <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T, class V> void print(map <T, V> v) {cerr << "[ "; for (auto i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(deque <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
 
 
// for random generations
mt19937 myrand(chrono::steady_clock::now().time_since_epoch().count());
// mt19937 myrand(131);
 
// for grid problems
int dx[8] = {-1,0,1,0,1,-1,1,-1};
int dy[8] = {0,1,0,-1,1,1,-1,-1};
 
// lowest / (1 << 17) >= 1e5 / (1 << 18) >= 2e5 / (1 << 21) >= 1e6
void fastIO() {
  ios_base::sync_with_stdio(false);
  cin.tie(nullptr); cout.tie(nullptr);
}
// file in/out
void setIO(string str = "") {
  fastIO();
 
  // if(str == "input") {
    // freopen("input.txt", "r", stdin);
    // freopen("output.txt", "w", stdout);
  // } else if(str != "") {
    // freopen((str + ".in").c_str(), "r", stdin);
    // freopen((str + ".out").c_str(), "w", stdout);
  // }
}
 
const int N = 2e6 + 10 + 4e5 + 10, maxM = 3e5 + 10, inf = 1e8, infi = 2e9 + 10;
vector<pair<pair<int, int>, int>> to_add[N];
int n, k, q;
 
struct node {
  int x, t, a, b;
};
 
vector<node> cand;

struct segTreeMax {  // Range Queries
  multiset<int> mt[N];
  vector<int> mTree;
  int size, sub;

  void init(ll n) {
    size = 1;
    while(size < n)  {
      size *= 2;
    }
    mTree.assign(2 * size - 1, 0);
  }

  void upd(int u, ll v, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      x -= sub;
      if(v >= 0) {
        mt[x].insert(v);
      } else {
        assert(mt[x].find(-v) != mt[x].end());
        mt[x].erase(mt[x].find(-v));
      }

      if(!mt[x].empty()) {
        mTree[x + sub] = *prev(mt[x].end());
      } else {
        mTree[x + sub] = -1;
      }
      return;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      upd(u, v, 2 * x + 1, lx, m);
    }else {
      upd(u, v, 2 * x + 2, m, rx);
    }
    mTree[x] = max(mTree[2 * x + 1], mTree[2 * x + 2]);
  }

  void upd(int u, ll v) {
    upd(u, v, 0, 0, size);
  }

  int gt(int u, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      sub = x;
      return x;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      return gt(u, 2 * x + 1, lx, m);
    }else {
      return gt(u, 2 * x + 2, m, rx);
    }
  }

  int gt(int u) {
    return gt(u, 0, 0, size);
  }

  int qry(int l, int r, int x, int lx, int rx) { // range queries
    if(l >= rx || lx >= r) {
      return -1;
    }

    if(lx >= l && r >= rx) {
      return mTree[x];
    }

    int m = (rx + lx) / 2;
    int s1 = qry(l, r, 2 * x + 1, lx, m);
    int s2 = qry(l, r, 2 * x + 2, m, rx);
    return max(s1, s2);
  }

  int qry(int l, int r) {
    return qry(l, r, 0,0,size);
  }
};

struct segTreeMin {  // Range Queries
  multiset<int> mt[N];
  vector<int> mTree;
  int size;
  int sub;

  void init(ll n) {
    size = 1;
    while(size < n)  {
      size *= 2;
    }
    mTree.assign(2 * size - 1, INT32_MAX);
  }

  int ind(int xx) {
    if(xx >= sub) {
      return xx - sub;
    } else {
      return xx;
    }
  }

  void upd(int u, ll v, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      x -= sub;
      if(v >= 0) {
        mt[x].insert(v);
      } else {
        assert(mt[x].find(-v) != mt[x].end());
        mt[x].erase(mt[x].find(-v));
      }

      if(!mt[x].empty()) {
        mTree[x + sub] = *mt[x].begin();
      } else {
        mTree[x + sub] = INT32_MAX;
      }
      return;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      upd(u, v, 2 * x + 1, lx, m);
    }else {
      upd(u, v, 2 * x + 2, m, rx);
    }
    mTree[x] = min(mTree[2 * x + 1], mTree[2 * x + 2]);
  }

  void upd(int u, ll v) {
    upd(u, v, 0, 0, size);
  }

  int gt(int u, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      sub = x;
      return x;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      return gt(u, 2 * x + 1, lx, m);
    }else {
      return gt(u, 2 * x + 2, m, rx);
    }
  }

  int gt(int u) {
    return gt(u, 0, 0, size);
  }

  int qry(int l, int r, int x, int lx, int rx) { // range queries
    if(l >= rx || lx >= r) {
      return INT32_MAX;
    }

    if(lx >= l && r >= rx) {
      return mTree[x];
    }

    int m = (rx + lx) / 2;
    int s1 = qry(l, r, 2 * x + 1, lx, m);
    int s2 = qry(l, r, 2 * x + 2, m, rx);
    return min(s1, s2);
  }

  int qry(int l, int r) {
    return qry(l, r, 0,0,size);
  }
};

segTreeMax rs;
segTreeMin ls;

vector<int> compress_times, compress_locations;
map<int, int> mx_col[maxM];
int pat[maxM];

int get(int val) {
  return lower_bound(all(compress_locations), val) - compress_locations.begin();
}

void add_interval(int type, int l, int r) {
  int mid = (l + r + 1) / 2;
  l = get(l);
  r = get(r);
  int midone = get(mid - 1);
  mid = midone + 1;
  
  if(mid <= r) {
    rs.upd(mid, r);
  }
  if(l < mid) {
    ls.upd(midone, l);
  }
}

void del_interval(int type, int l, int r) {
  int mid = (l + r + 1) / 2;
  
  l = get(l);
  r = get(r);
  int midone = get(mid - 1);
  mid = midone + 1;

  if(mid <= r) rs.upd(mid, -r);
  if(l < mid) ls.upd(midone, -l);
}

void solve_() {
  cin >> n >> k >> q;
 
  for(int i = 1; i <= n; i++) {
    int x, t, a, b; 
    cin >> x >> t >> a >> b;
    
    compress_times.push_back(a);
    compress_times.push_back(b + 1);

    compress_locations.push_back(x);

    cand.push_back({x, t, a, b});
  }

  vector<pair<int, int>> queries;
  for(int i = 1; i <= q; i++) {
    int l, y; cin >> l >> y;
    compress_locations.push_back(l);
    compress_times.push_back(y);
    queries.emplace_back(l, y);
  }

  compress_locations.push_back(-infi);
  compress_locations.push_back(infi);
  
  sort(all(compress_times));
  uniq(compress_times);


  for(auto &i: cand) {
    i.a = lower_bound(all(compress_times), i.a) - compress_times.begin();
    i.b = lower_bound(all(compress_times), i.b + 1) - compress_times.begin();

    to_add[i.a].push_back({{i.x, i.t}, 1});
    to_add[i.b].push_back({{i.x, i.t}, 2});
  } 

  for(int i = 1; i <= k; i++) {
    mx_col[i][-infi] = 1;
    mx_col[i][infi] = 1;
  }

  for(int i = 0; i < sz(compress_times); i++) {
    for(auto cc: to_add[i]) {
      if(cc.second == 1) { 
        auto j = cc.first;
        if(mx_col[j.second].find(j.first) != mx_col[j.second].end()) {
          mx_col[j.second][j.first]++;
          continue;
        }

        mx_col[j.second][j.first] = 1;
        auto it = mx_col[j.second].find(j.first);
        auto it_prev = prev(it), it_next = next(it);

        int mid1 = (it_next->first + j.first + 1) / 2;
        int mid2 = (it_prev->first + j.first + 1) / 2;

        compress_locations.push_back(mid1);
        compress_locations.push_back(mid1 - 1);

        compress_locations.push_back(mid2);
        compress_locations.push_back(mid2 - 1);
      } else if(cc.second == 2) {
        auto j = cc.first;
        mx_col[j.second][j.first]--;
        if(mx_col[j.second][j.first] == 0) {

          auto it = mx_col[j.second].find(j.first);
          auto it_prev = prev(it), it_next = next(it);

          int mid1 = (it_next->first + it_prev->first + 1) / 2;
          
          compress_locations.push_back(mid1);
          compress_locations.push_back(mid1 - 1);
  
          mx_col[j.second].erase(j.first);
        }
      } 
    }
  }

  int it = 1;
  for(auto &i: queries) {
    i.second = lower_bound(all(compress_times), i.second) - compress_times.begin();
    to_add[i.second].push_back({{i.first, it}, 0});
    it++;
  }

  sort(all(compress_locations));
  uniq(compress_locations);
  ls.init(sz(compress_locations) + 2);
  rs.init(sz(compress_locations) + 2);
  rs.gt(0);
  ls.gt(0);

  for(int i = 1; i <= k; i++) {
    mx_col[i].clear();
    
    mx_col[i][-infi] = 1;
    mx_col[i][infi] = 1;
  }

  vector<bool> empty(k + 1, true);
  int emp = k;
  for(int i = 0; i < sz(compress_times); i++) {
    for(auto cc: to_add[i]) {
      if(cc.second == 1) { 
        auto j = cc.first;
        if(mx_col[j.second].find(j.first) != mx_col[j.second].end()) {
          mx_col[j.second][j.first]++;
          continue;
        }

        mx_col[j.second][j.first] = 1;
        if(sz(mx_col[j.second]) == 3) {
          empty[j.second] = false;
          emp--;
        }

        auto it = mx_col[j.second].find(j.first);
        auto it_prev = prev(it), it_next = next(it);

        int mid1 = (it_next->first + j.first + 1) / 2;
        int mid2 = (it_prev->first + j.first + 1) / 2;

        add_interval(j.second, it_prev->first, j.first);
        add_interval(j.second, j.first, it_next->first);

        if(it_prev->first != -infi || it_next->first != infi) {
          del_interval(j.second, it_prev->first, it_next->first);
        }
      } else if(cc.second == 2) {
        auto j = cc.first;
        mx_col[j.second][j.first]--;
        if(mx_col[j.second][j.first] == 0) {

          auto it = mx_col[j.second].find(j.first);
          if(sz(mx_col[j.second]) == 3) {
            empty[j.second] = true;
            emp++;
          }

          auto it_prev = prev(it), it_next = next(it);
          del_interval(j.second, it_prev->first, j.first);
          del_interval(j.second, j.first, it_next->first);

          if(it_prev->first != -infi || it_next->first != infi) {
            add_interval(j.second, it_prev->first, it_next->first);
          }

          mx_col[j.second].erase(j.first);
        }
      } else {
        auto j = cc.first;
        if(emp) {
          pat[j.second] = -1;
        } else {
          int cur = lower_bound(all(compress_locations), j.first) - compress_locations.begin();
          int li = ls.qry(cur, sz(compress_locations) + 1);
          int ri = rs.qry(0, cur + 1);

          if(li <= cur) {
            pat[j.second] = max(pat[j.second], j.first - compress_locations[li]);
          }

          if(ri >= cur) {
            pat[j.second] = max(pat[j.second], compress_locations[ri] - j.first);
          }
        }
      }
    }
  }

  for(int i = 1; i <= q; i++) {
    cout << pat[i] << '\n';
  }
 }
 
int main() {
  setIO();
 
  auto solve = [&](int test_case)-> void {
    for(int i = 1; i <= test_case; i++) {
      solve_();
    }
  };
 
  int test_cases = 1;
  // cin >> test_cases;
  solve(test_cases);
 
  return 0;
}

Compilation message

new_home.cpp: In function 'void solve_()':
new_home.cpp:429:13: warning: unused variable 'mid1' [-Wunused-variable]
  429 |         int mid1 = (it_next->first + j.first + 1) / 2;
      |             ^~~~
new_home.cpp:430:13: warning: unused variable 'mid2' [-Wunused-variable]
  430 |         int mid2 = (it_prev->first + j.first + 1) / 2;
      |             ^~~~
# Verdict Execution time Memory Grader output
1 Correct 129 ms 296216 KB Output is correct
2 Correct 136 ms 296160 KB Output is correct
3 Correct 122 ms 296200 KB Output is correct
4 Correct 126 ms 296220 KB Output is correct
5 Correct 122 ms 296260 KB Output is correct
6 Correct 123 ms 296268 KB Output is correct
7 Correct 123 ms 296392 KB Output is correct
8 Correct 130 ms 296512 KB Output is correct
9 Correct 125 ms 296504 KB Output is correct
10 Correct 126 ms 296324 KB Output is correct
11 Correct 140 ms 296380 KB Output is correct
12 Correct 123 ms 296348 KB Output is correct
13 Correct 122 ms 296392 KB Output is correct
14 Correct 127 ms 296440 KB Output is correct
15 Correct 129 ms 296436 KB Output is correct
16 Correct 123 ms 296392 KB Output is correct
17 Correct 132 ms 296420 KB Output is correct
18 Correct 133 ms 296436 KB Output is correct
19 Correct 135 ms 296432 KB Output is correct
20 Correct 141 ms 296340 KB Output is correct
21 Correct 129 ms 296416 KB Output is correct
22 Correct 133 ms 296496 KB Output is correct
23 Correct 127 ms 296468 KB Output is correct
24 Correct 123 ms 296372 KB Output is correct
25 Correct 121 ms 296420 KB Output is correct
26 Correct 129 ms 296404 KB Output is correct
27 Correct 122 ms 296232 KB Output is correct
28 Correct 122 ms 296404 KB Output is correct
29 Correct 125 ms 296284 KB Output is correct
30 Correct 201 ms 296388 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 129 ms 296216 KB Output is correct
2 Correct 136 ms 296160 KB Output is correct
3 Correct 122 ms 296200 KB Output is correct
4 Correct 126 ms 296220 KB Output is correct
5 Correct 122 ms 296260 KB Output is correct
6 Correct 123 ms 296268 KB Output is correct
7 Correct 123 ms 296392 KB Output is correct
8 Correct 130 ms 296512 KB Output is correct
9 Correct 125 ms 296504 KB Output is correct
10 Correct 126 ms 296324 KB Output is correct
11 Correct 140 ms 296380 KB Output is correct
12 Correct 123 ms 296348 KB Output is correct
13 Correct 122 ms 296392 KB Output is correct
14 Correct 127 ms 296440 KB Output is correct
15 Correct 129 ms 296436 KB Output is correct
16 Correct 123 ms 296392 KB Output is correct
17 Correct 132 ms 296420 KB Output is correct
18 Correct 133 ms 296436 KB Output is correct
19 Correct 135 ms 296432 KB Output is correct
20 Correct 141 ms 296340 KB Output is correct
21 Correct 129 ms 296416 KB Output is correct
22 Correct 133 ms 296496 KB Output is correct
23 Correct 127 ms 296468 KB Output is correct
24 Correct 123 ms 296372 KB Output is correct
25 Correct 121 ms 296420 KB Output is correct
26 Correct 129 ms 296404 KB Output is correct
27 Correct 122 ms 296232 KB Output is correct
28 Correct 122 ms 296404 KB Output is correct
29 Correct 125 ms 296284 KB Output is correct
30 Correct 201 ms 296388 KB Output is correct
31 Correct 859 ms 324152 KB Output is correct
32 Correct 170 ms 302332 KB Output is correct
33 Correct 801 ms 318560 KB Output is correct
34 Correct 864 ms 319284 KB Output is correct
35 Correct 897 ms 324888 KB Output is correct
36 Correct 824 ms 324704 KB Output is correct
37 Correct 627 ms 317036 KB Output is correct
38 Correct 623 ms 316848 KB Output is correct
39 Correct 539 ms 316660 KB Output is correct
40 Correct 597 ms 316764 KB Output is correct
41 Correct 686 ms 321596 KB Output is correct
42 Correct 654 ms 321364 KB Output is correct
43 Correct 191 ms 304228 KB Output is correct
44 Correct 687 ms 321576 KB Output is correct
45 Correct 674 ms 321184 KB Output is correct
46 Correct 626 ms 321132 KB Output is correct
47 Correct 446 ms 320624 KB Output is correct
48 Correct 449 ms 320408 KB Output is correct
49 Correct 495 ms 320624 KB Output is correct
50 Correct 519 ms 321096 KB Output is correct
51 Correct 504 ms 320576 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4485 ms 465564 KB Output is correct
2 Correct 4764 ms 444656 KB Output is correct
3 Correct 3062 ms 469456 KB Output is correct
4 Correct 4174 ms 471620 KB Output is correct
5 Correct 4388 ms 444492 KB Output is correct
6 Correct 4615 ms 444732 KB Output is correct
7 Correct 2760 ms 469568 KB Output is correct
8 Correct 3303 ms 472360 KB Output is correct
9 Correct 3503 ms 456996 KB Output is correct
10 Correct 3725 ms 445804 KB Output is correct
11 Correct 2447 ms 443752 KB Output is correct
12 Correct 2487 ms 445032 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 5062 ms 453388 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 129 ms 296216 KB Output is correct
2 Correct 136 ms 296160 KB Output is correct
3 Correct 122 ms 296200 KB Output is correct
4 Correct 126 ms 296220 KB Output is correct
5 Correct 122 ms 296260 KB Output is correct
6 Correct 123 ms 296268 KB Output is correct
7 Correct 123 ms 296392 KB Output is correct
8 Correct 130 ms 296512 KB Output is correct
9 Correct 125 ms 296504 KB Output is correct
10 Correct 126 ms 296324 KB Output is correct
11 Correct 140 ms 296380 KB Output is correct
12 Correct 123 ms 296348 KB Output is correct
13 Correct 122 ms 296392 KB Output is correct
14 Correct 127 ms 296440 KB Output is correct
15 Correct 129 ms 296436 KB Output is correct
16 Correct 123 ms 296392 KB Output is correct
17 Correct 132 ms 296420 KB Output is correct
18 Correct 133 ms 296436 KB Output is correct
19 Correct 135 ms 296432 KB Output is correct
20 Correct 141 ms 296340 KB Output is correct
21 Correct 129 ms 296416 KB Output is correct
22 Correct 133 ms 296496 KB Output is correct
23 Correct 127 ms 296468 KB Output is correct
24 Correct 123 ms 296372 KB Output is correct
25 Correct 121 ms 296420 KB Output is correct
26 Correct 129 ms 296404 KB Output is correct
27 Correct 122 ms 296232 KB Output is correct
28 Correct 122 ms 296404 KB Output is correct
29 Correct 125 ms 296284 KB Output is correct
30 Correct 201 ms 296388 KB Output is correct
31 Correct 859 ms 324152 KB Output is correct
32 Correct 170 ms 302332 KB Output is correct
33 Correct 801 ms 318560 KB Output is correct
34 Correct 864 ms 319284 KB Output is correct
35 Correct 897 ms 324888 KB Output is correct
36 Correct 824 ms 324704 KB Output is correct
37 Correct 627 ms 317036 KB Output is correct
38 Correct 623 ms 316848 KB Output is correct
39 Correct 539 ms 316660 KB Output is correct
40 Correct 597 ms 316764 KB Output is correct
41 Correct 686 ms 321596 KB Output is correct
42 Correct 654 ms 321364 KB Output is correct
43 Correct 191 ms 304228 KB Output is correct
44 Correct 687 ms 321576 KB Output is correct
45 Correct 674 ms 321184 KB Output is correct
46 Correct 626 ms 321132 KB Output is correct
47 Correct 446 ms 320624 KB Output is correct
48 Correct 449 ms 320408 KB Output is correct
49 Correct 495 ms 320624 KB Output is correct
50 Correct 519 ms 321096 KB Output is correct
51 Correct 504 ms 320576 KB Output is correct
52 Correct 635 ms 334936 KB Output is correct
53 Correct 618 ms 328068 KB Output is correct
54 Correct 825 ms 328776 KB Output is correct
55 Correct 676 ms 325396 KB Output is correct
56 Correct 658 ms 327772 KB Output is correct
57 Correct 729 ms 321852 KB Output is correct
58 Correct 687 ms 324676 KB Output is correct
59 Correct 674 ms 327188 KB Output is correct
60 Correct 679 ms 320964 KB Output is correct
61 Correct 299 ms 323620 KB Output is correct
62 Correct 667 ms 335052 KB Output is correct
63 Correct 772 ms 329404 KB Output is correct
64 Correct 818 ms 326776 KB Output is correct
65 Correct 861 ms 322360 KB Output is correct
66 Correct 722 ms 320364 KB Output is correct
67 Correct 395 ms 309996 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 129 ms 296216 KB Output is correct
2 Correct 136 ms 296160 KB Output is correct
3 Correct 122 ms 296200 KB Output is correct
4 Correct 126 ms 296220 KB Output is correct
5 Correct 122 ms 296260 KB Output is correct
6 Correct 123 ms 296268 KB Output is correct
7 Correct 123 ms 296392 KB Output is correct
8 Correct 130 ms 296512 KB Output is correct
9 Correct 125 ms 296504 KB Output is correct
10 Correct 126 ms 296324 KB Output is correct
11 Correct 140 ms 296380 KB Output is correct
12 Correct 123 ms 296348 KB Output is correct
13 Correct 122 ms 296392 KB Output is correct
14 Correct 127 ms 296440 KB Output is correct
15 Correct 129 ms 296436 KB Output is correct
16 Correct 123 ms 296392 KB Output is correct
17 Correct 132 ms 296420 KB Output is correct
18 Correct 133 ms 296436 KB Output is correct
19 Correct 135 ms 296432 KB Output is correct
20 Correct 141 ms 296340 KB Output is correct
21 Correct 129 ms 296416 KB Output is correct
22 Correct 133 ms 296496 KB Output is correct
23 Correct 127 ms 296468 KB Output is correct
24 Correct 123 ms 296372 KB Output is correct
25 Correct 121 ms 296420 KB Output is correct
26 Correct 129 ms 296404 KB Output is correct
27 Correct 122 ms 296232 KB Output is correct
28 Correct 122 ms 296404 KB Output is correct
29 Correct 125 ms 296284 KB Output is correct
30 Correct 201 ms 296388 KB Output is correct
31 Correct 859 ms 324152 KB Output is correct
32 Correct 170 ms 302332 KB Output is correct
33 Correct 801 ms 318560 KB Output is correct
34 Correct 864 ms 319284 KB Output is correct
35 Correct 897 ms 324888 KB Output is correct
36 Correct 824 ms 324704 KB Output is correct
37 Correct 627 ms 317036 KB Output is correct
38 Correct 623 ms 316848 KB Output is correct
39 Correct 539 ms 316660 KB Output is correct
40 Correct 597 ms 316764 KB Output is correct
41 Correct 686 ms 321596 KB Output is correct
42 Correct 654 ms 321364 KB Output is correct
43 Correct 191 ms 304228 KB Output is correct
44 Correct 687 ms 321576 KB Output is correct
45 Correct 674 ms 321184 KB Output is correct
46 Correct 626 ms 321132 KB Output is correct
47 Correct 446 ms 320624 KB Output is correct
48 Correct 449 ms 320408 KB Output is correct
49 Correct 495 ms 320624 KB Output is correct
50 Correct 519 ms 321096 KB Output is correct
51 Correct 504 ms 320576 KB Output is correct
52 Correct 4485 ms 465564 KB Output is correct
53 Correct 4764 ms 444656 KB Output is correct
54 Correct 3062 ms 469456 KB Output is correct
55 Correct 4174 ms 471620 KB Output is correct
56 Correct 4388 ms 444492 KB Output is correct
57 Correct 4615 ms 444732 KB Output is correct
58 Correct 2760 ms 469568 KB Output is correct
59 Correct 3303 ms 472360 KB Output is correct
60 Correct 3503 ms 456996 KB Output is correct
61 Correct 3725 ms 445804 KB Output is correct
62 Correct 2447 ms 443752 KB Output is correct
63 Correct 2487 ms 445032 KB Output is correct
64 Execution timed out 5062 ms 453388 KB Time limit exceeded
65 Halted 0 ms 0 KB -